Add ResNet_IBN_a
parent
4bf49c24ff
commit
618d39b951
|
@ -0,0 +1,11 @@
|
|||
# Experiment all tricks with center loss : 256x128-bs16x4-warmup10-erase0_5-labelsmooth_on-laststride1-bnneck_on-triplet_centerloss0_0005
|
||||
# Dataset 1: market1501
|
||||
# imagesize: 256x128
|
||||
# batchsize: 16x4
|
||||
# warmup_step 10
|
||||
# random erase prob 0.5
|
||||
# labelsmooth: on
|
||||
# last stride 1
|
||||
# bnneck on
|
||||
# with center loss
|
||||
python3 tools/train.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('1')" MODEL.NAME "('resnet50_ibn_a')" MODEL.PRETRAIN_PATH "('/home/haoluo/gu/ibn_a.pth')" DATASETS.NAMES "('market1501')" DATASETS.ROOT_DIR "('/home/haoluo/data')" OUTPUT_DIR "('/home/haoluo/log/gu/reid_baseline_review/Opensource_test/market1501/Experiment-resnet50_ibn_a-all-tricks-tri_center-256x128-bs16x4-warmup10-erase0_5-labelsmooth_on-laststride1-bnneck_on-triplet_centerloss0_0005')"
|
|
@ -1,11 +0,0 @@
|
|||
# Experiment all tricks with center loss : 256x128-bs16x4-warmup10-erase0_5-labelsmooth_on-laststride1-bnneck_on-triplet_centerloss0_0005
|
||||
# Dataset 2: dukemtmc
|
||||
# imagesize: 256x128
|
||||
# batchsize: 16x4
|
||||
# warmup_step 10
|
||||
# random erase prob 0.5
|
||||
# labelsmooth: on
|
||||
# last stride 1
|
||||
# bnneck on
|
||||
# with center loss
|
||||
python3 tools/train.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('1')" MODEL.NAME "('se_resnext50')" MODEL.PRETRAIN_PATH "('/home/haoluo/.torch/models/se_resnext50_32x4d-a260b3a4.pth')" DATASETS.NAMES "('dukemtmc')" DATASETS.ROOT_DIR "('/home/haoluo/data')" OUTPUT_DIR "('/home/haoluo/log/gu/reid_baseline_review/Opensource_test/dukemtmc/Experiment-seresnext50-all-tricks-tri_center-256x128-bs16x4-warmup10-erase0_5-labelsmooth_on-laststride1-bnneck_on-triplet_centerloss0_0005')"
|
|
@ -80,6 +80,7 @@ In the future, we will
|
|||
| SeResNet101 | 94.6 (87.3) | 87.5 (78.0) |
|
||||
| SeResNeXt50 | 94.9 (87.6) | 88.0 (78.3) |
|
||||
| SeResNeXt101 | 95.0 (88.0) | 88.4 (79.0) |
|
||||
| IBN-Net50-a | 95.0 (88.2) | 90.1 (79.1) |
|
||||
|
||||
[model(Market1501)](https://drive.google.com/open?id=1hn0sXLZ5yJcxtmuY-ItQfYD7hBtHwt7A)
|
||||
|
||||
|
@ -137,7 +138,7 @@ The designed architecture follows this guide [PyTorch-Project-Template](https://
|
|||
|
||||
5. Prepare pretrained model if you don't have
|
||||
|
||||
(1)Resnet
|
||||
(1)ResNet
|
||||
|
||||
```python
|
||||
from torchvision import models
|
||||
|
@ -151,8 +152,10 @@ The designed architecture follows this guide [PyTorch-Project-Template](https://
|
|||
```
|
||||
Then it will automatically download model in `~/.torch/models/`, you should set this path in `config/defaults.py` for all training or set in every single training config file in `configs/` or set in every single command.
|
||||
|
||||
(3)Load your self-trained model
|
||||
|
||||
(3)ResNet50_IBN_a
|
||||
Please download from here (Please wait).
|
||||
|
||||
(4)Load your self-trained model
|
||||
If you want to continue your train process based on your self-trained model, you can change the configuration `PRETRAIN_CHOICE` from 'imagenet' to 'self' and set the `PRETRAIN_PATH` to your self-trained model. We offer `Experiment-pretrain_choice-all_tricks-tri_center-market.sh` as an example.
|
||||
|
||||
6. If you want to know the detailed configurations and their meaning, please refer to `config/defaults.py`. If you want to set your own parameters, you can follow our method: create a new yml file, then set your own parameters. Add `--config_file='configs/your yml file'` int the commands described below, then our code will merge your configuration. automatically.
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
@author: liaoxingyu
|
||||
@contact: sherlockliao01@gmail.com
|
||||
"""
|
||||
from .cuhk03 import CUHK03
|
||||
# from .cuhk03 import CUHK03
|
||||
from .dukemtmcreid import DukeMTMCreID
|
||||
from .market1501 import Market1501
|
||||
from .msmt17 import MSMT17
|
||||
|
@ -12,7 +12,7 @@ from .dataset_loader import ImageDataset
|
|||
|
||||
__factory = {
|
||||
'market1501': Market1501,
|
||||
'cuhk03': CUHK03,
|
||||
# 'cuhk03': CUHK03,
|
||||
'dukemtmc': DukeMTMCreID,
|
||||
'msmt17': MSMT17,
|
||||
'veri': VeRi,
|
||||
|
|
|
@ -0,0 +1,181 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
__all__ = ['ResNet_IBN', 'resnet50_ibn_a', 'resnet101_ibn_a',
|
||||
'resnet152_ibn_a']
|
||||
|
||||
|
||||
model_urls = {
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
}
|
||||
|
||||
|
||||
class IBN(nn.Module):
|
||||
def __init__(self, planes):
|
||||
super(IBN, self).__init__()
|
||||
half1 = int(planes/2)
|
||||
self.half = half1
|
||||
half2 = planes - half1
|
||||
self.IN = nn.InstanceNorm2d(half1, affine=True)
|
||||
self.BN = nn.BatchNorm2d(half2)
|
||||
|
||||
def forward(self, x):
|
||||
split = torch.split(x, self.half, 1)
|
||||
out1 = self.IN(split[0].contiguous())
|
||||
out2 = self.BN(split[1].contiguous())
|
||||
out = torch.cat((out1, out2), 1)
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck_IBN(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None):
|
||||
super(Bottleneck_IBN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
if ibn:
|
||||
self.bn1 = IBN(planes)
|
||||
else:
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet_IBN(nn.Module):
|
||||
|
||||
def __init__(self, last_stride, block, layers, num_classes=1000):
|
||||
scale = 64
|
||||
self.inplanes = scale
|
||||
super(ResNet_IBN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(scale)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, scale, layers[0])
|
||||
self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, scale*8, layers[3], stride=last_stride)
|
||||
self.avgpool = nn.AvgPool2d(7)
|
||||
self.fc = nn.Linear(scale * 8 * block.expansion, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.InstanceNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
ibn = True
|
||||
if planes == 512:
|
||||
ibn = False
|
||||
layers.append(block(self.inplanes, planes, ibn, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, ibn))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
# x = self.avgpool(x)
|
||||
# x = x.view(x.size(0), -1)
|
||||
# x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
def load_param(self, model_path):
|
||||
param_dict = torch.load(model_path)
|
||||
for i in param_dict:
|
||||
if 'fc' in i:
|
||||
continue
|
||||
self.state_dict()[i].copy_(param_dict[i])
|
||||
|
||||
|
||||
def resnet50_ibn_a(last_stride, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNet-50 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 6, 3], **kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
|
||||
return model
|
||||
|
||||
|
||||
def resnet101_ibn_a(last_stride, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNet-101 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 23, 3], **kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
|
||||
return model
|
||||
|
||||
|
||||
def resnet152_ibn_a(last_stride, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNet-152 model.
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 8, 36, 3], **kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
|
||||
return model
|
|
@ -9,6 +9,7 @@ from torch import nn
|
|||
|
||||
from .backbones.resnet import ResNet, BasicBlock, Bottleneck
|
||||
from .backbones.senet import SENet, SEResNetBottleneck, SEBottleneck, SEResNeXtBottleneck
|
||||
from .backbones.resnet_ibn_a import resnet50_ibn_a
|
||||
|
||||
|
||||
def weights_init_kaiming(m):
|
||||
|
@ -124,6 +125,8 @@ class Baseline(nn.Module):
|
|||
reduction=16,
|
||||
dropout_p=0.2,
|
||||
last_stride=last_stride)
|
||||
elif model_name == 'resnet50_ibn_a':
|
||||
self.base = resnet50_ibn_a(last_stride)
|
||||
|
||||
if pretrain_choice == 'imagenet':
|
||||
self.base.load_param(model_path)
|
||||
|
|
Loading…
Reference in New Issue