parent
da3f2fea1a
commit
b84cf42f7a
|
@ -44,13 +44,15 @@ class CenterLoss(nn.Module):
|
|||
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
|
||||
mask = labels.eq(classes.expand(batch_size, self.num_classes))
|
||||
|
||||
dist = []
|
||||
for i in range(batch_size):
|
||||
value = distmat[i][mask[i]]
|
||||
value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
|
||||
dist.append(value)
|
||||
dist = torch.cat(dist)
|
||||
loss = dist.mean()
|
||||
dist = distmat * mask.float()
|
||||
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
|
||||
#dist = []
|
||||
#for i in range(batch_size):
|
||||
# value = distmat[i][mask[i]]
|
||||
# value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
|
||||
# dist.append(value)
|
||||
#dist = torch.cat(dist)
|
||||
#loss = dist.mean()
|
||||
return loss
|
||||
|
||||
|
||||
|
@ -64,4 +66,4 @@ if __name__ == '__main__':
|
|||
targets = torch.Tensor([0, 1, 2, 3, 2, 3, 1, 4, 5, 3, 2, 1, 0, 0, 5, 4]).cuda()
|
||||
|
||||
loss = center_loss(features, targets)
|
||||
print(loss)
|
||||
print(loss)
|
||||
|
|
Loading…
Reference in New Issue