import torch import torch.nn as nn import math import torch.utils.model_zoo as model_zoo __all__ = ['ResNet_IBN', 'resnet50_ibn_a', 'resnet101_ibn_a', 'resnet152_ibn_a'] model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class IBN(nn.Module): def __init__(self, planes): super(IBN, self).__init__() half1 = int(planes/2) self.half = half1 half2 = planes - half1 self.IN = nn.InstanceNorm2d(half1, affine=True) self.BN = nn.BatchNorm2d(half2) def forward(self, x): split = torch.split(x, self.half, 1) out1 = self.IN(split[0].contiguous()) out2 = self.BN(split[1].contiguous()) out = torch.cat((out1, out2), 1) return out class Bottleneck_IBN(nn.Module): expansion = 4 def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None): super(Bottleneck_IBN, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) if ibn: self.bn1 = IBN(planes) else: self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet_IBN(nn.Module): def __init__(self, last_stride, block, layers, num_classes=1000): scale = 64 self.inplanes = scale super(ResNet_IBN, self).__init__() self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(scale) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, scale, layers[0]) self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2) self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2) self.layer4 = self._make_layer(block, scale*8, layers[3], stride=last_stride) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(scale * 8 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.InstanceNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] ibn = True if planes == 512: ibn = False layers.append(block(self.inplanes, planes, ibn, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, ibn)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # x = self.avgpool(x) # x = x.view(x.size(0), -1) # x = self.fc(x) return x def load_param(self, model_path): param_dict = torch.load(model_path) for i in param_dict: if 'fc' in i: continue self.state_dict()[i].copy_(param_dict[i]) def resnet50_ibn_a(last_stride, pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101_ibn_a(last_stride, pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152_ibn_a(last_stride, pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model