from __future__ import absolute_import import torch from torch import nn class CenterLoss(nn.Module): """Center loss. Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016. Args: num_classes (int): number of classes. feat_dim (int): feature dimension. """ def __init__(self, num_classes=751, feat_dim=2048, use_gpu=True): super(CenterLoss, self).__init__() self.num_classes = num_classes self.feat_dim = feat_dim self.use_gpu = use_gpu if self.use_gpu: self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda()) else: self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim)) def forward(self, x, labels): """ Args: x: feature matrix with shape (batch_size, feat_dim). labels: ground truth labels with shape (num_classes). """ assert x.size(0) == labels.size(0), "features.size(0) is not equal to labels.size(0)" batch_size = x.size(0) distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \ torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t() distmat.addmm_(1, -2, x, self.centers.t()) classes = torch.arange(self.num_classes).long() if self.use_gpu: classes = classes.cuda() labels = labels.unsqueeze(1).expand(batch_size, self.num_classes) mask = labels.eq(classes.expand(batch_size, self.num_classes)) dist = [] for i in range(batch_size): value = distmat[i][mask[i]] value = value.clamp(min=1e-12, max=1e+12) # for numerical stability dist.append(value) dist = torch.cat(dist) loss = dist.mean() return loss if __name__ == '__main__': use_gpu = False center_loss = CenterLoss(use_gpu=use_gpu) features = torch.rand(16, 2048) targets = torch.Tensor([0, 1, 2, 3, 2, 3, 1, 4, 5, 3, 2, 1, 0, 0, 5, 4]).long() if use_gpu: features = torch.rand(16, 2048).cuda() targets = torch.Tensor([0, 1, 2, 3, 2, 3, 1, 4, 5, 3, 2, 1, 0, 0, 5, 4]).cuda() loss = center_loss(features, targets) print(loss)