reid-strong-baseline/layers/range_loss.py

233 lines
10 KiB
Python

from __future__ import absolute_import
import torch
from torch import nn
class RangeLoss(nn.Module):
"""
Range_loss = alpha * intra_class_loss + beta * inter_class_loss
intra_class_loss is the harmonic mean value of the top_k largest distances beturn intra_class_pairs
inter_class_loss is the shortest distance between different class centers
"""
def __init__(self, k=2, margin=0.1, alpha=0.5, beta=0.5, use_gpu=True, ordered=True, ids_per_batch=32, imgs_per_id=4):
super(RangeLoss, self).__init__()
self.use_gpu = use_gpu
self.margin = margin
self.k = k
self.alpha = alpha
self.beta = beta
self.ordered = ordered
self.ids_per_batch = ids_per_batch
self.imgs_per_id = imgs_per_id
def _pairwise_distance(self, features):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
Return:
pairwise distance matrix with shape(batch_size, batch_size)
"""
n = features.size(0)
dist = torch.pow(features, 2).sum(dim=1, keepdim=True).expand(n, n)
dist = dist + dist.t()
dist.addmm_(1, -2, features, features.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
return dist
def _compute_top_k(self, features):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
Return:
top_k largest distances
"""
# reading the codes below can help understand better
'''
dist_array_2 = self._pairwise_distance(features)
n = features.size(0)
mask = torch.zeros(n, n)
if self.use_gpu: mask=mask.cuda()
for i in range(0, n):
for j in range(i+1, n):
mask[i, j] += 1
dist_array_2 = dist_array_2 * mask
dist_array_2 = dist_array_2.view(1, -1)
dist_array_2 = dist_array_2[torch.gt(dist_array_2, 0)]
top_k_2 = dist_array_2.sort()[0][-self.k:]
print(top_k_2)
'''
dist_array = self._pairwise_distance(features)
dist_array = dist_array.view(1, -1)
top_k = dist_array.sort()[0][0, -self.k * 2::2] # Because there are 2 same value of same feature pair in the dist_array
# print('top k intra class dist:', top_k)
return top_k
def _compute_min_dist(self, center_features):
"""
Args:
center_features: center matrix (before softmax) with shape (center_number, center_dim)
Return:
minimum center distance
"""
'''
# reading codes below can help understand better
dist_array = self._pairwise_distance(center_features)
n = center_features.size(0)
mask = torch.zeros(n, n)
if self.use_gpu: mask=mask.cuda()
for i in range(0, n):
for j in range(i + 1, n):
mask[i, j] += 1
dist_array *= mask
dist_array = dist_array.view(1, -1)
dist_array = dist_array[torch.gt(dist_array, 0)]
min_inter_class_dist = dist_array.min()
print(min_inter_class_dist)
'''
n = center_features.size(0)
dist_array2 = self._pairwise_distance(center_features)
min_inter_class_dist2 = dist_array2.view(1, -1).sort()[0][0][n] # exclude self compare, the first one is the min_inter_class_dist
return min_inter_class_dist2
def _calculate_centers(self, features, targets, ordered, ids_per_batch, imgs_per_id):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
targets: ground truth labels with shape (batch_size)
ordered: bool type. If the train data per batch are formed as p*k, where p is the num of ids per batch and k is the num of images per id.
ids_per_batch: num of different ids per batch
imgs_per_id: num of images per id
Return:
center_features: center matrix (before softmax) with shape (center_number, center_dim)
"""
if self.use_gpu:
if ordered:
if targets.size(0) == ids_per_batch * imgs_per_id:
unique_labels = targets[0:targets.size(0):imgs_per_id]
else:
unique_labels = targets.cpu().unique().cuda()
else:
unique_labels = targets.cpu().unique().cuda()
else:
if ordered:
if targets.size(0) == ids_per_batch * imgs_per_id:
unique_labels = targets[0:targets.size(0):imgs_per_id]
else:
unique_labels = targets.unique()
else:
unique_labels = targets.unique()
center_features = torch.zeros(unique_labels.size(0), features.size(1))
if self.use_gpu:
center_features = center_features.cuda()
for i in range(unique_labels.size(0)):
label = unique_labels[i]
same_class_features = features[targets == label]
center_features[i] = same_class_features.mean(dim=0)
return center_features
def _inter_class_loss(self, features, targets, ordered, ids_per_batch, imgs_per_id):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
targets: ground truth labels with shape (batch_size)
margin: inter class ringe loss margin
ordered: bool type. If the train data per batch are formed as p*k, where p is the num of ids per batch and k is the num of images per id.
ids_per_batch: num of different ids per batch
imgs_per_id: num of images per id
Return:
inter_class_loss
"""
center_features = self._calculate_centers(features, targets, ordered, ids_per_batch, imgs_per_id)
min_inter_class_center_distance = self._compute_min_dist(center_features)
# print('min_inter_class_center_dist:', min_inter_class_center_distance)
return torch.relu(self.margin - min_inter_class_center_distance)
def _intra_class_loss(self, features, targets, ordered, ids_per_batch, imgs_per_id):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
targets: ground truth labels with shape (batch_size)
ordered: bool type. If the train data per batch are formed as p*k, where p is the num of ids per batch and k is the num of images per id.
ids_per_batch: num of different ids per batch
imgs_per_id: num of images per id
Return:
intra_class_loss
"""
if self.use_gpu:
if ordered:
if targets.size(0) == ids_per_batch * imgs_per_id:
unique_labels = targets[0:targets.size(0):imgs_per_id]
else:
unique_labels = targets.cpu().unique().cuda()
else:
unique_labels = targets.cpu().unique().cuda()
else:
if ordered:
if targets.size(0) == ids_per_batch * imgs_per_id:
unique_labels = targets[0:targets.size(0):imgs_per_id]
else:
unique_labels = targets.unique()
else:
unique_labels = targets.unique()
intra_distance = torch.zeros(unique_labels.size(0))
if self.use_gpu:
intra_distance = intra_distance.cuda()
for i in range(unique_labels.size(0)):
label = unique_labels[i]
same_class_distances = 1.0 / self._compute_top_k(features[targets == label])
intra_distance[i] = self.k / torch.sum(same_class_distances)
# print('intra_distace:', intra_distance)
return torch.sum(intra_distance)
def _range_loss(self, features, targets, ordered, ids_per_batch, imgs_per_id):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
targets: ground truth labels with shape (batch_size)
ordered: bool type. If the train data per batch are formed as p*k, where p is the num of ids per batch and k is the num of images per id.
ids_per_batch: num of different ids per batch
imgs_per_id: num of images per id
Return:
range_loss
"""
inter_class_loss = self._inter_class_loss(features, targets, ordered, ids_per_batch, imgs_per_id)
intra_class_loss = self._intra_class_loss(features, targets, ordered, ids_per_batch, imgs_per_id)
range_loss = self.alpha * intra_class_loss + self.beta * inter_class_loss
return range_loss, intra_class_loss, inter_class_loss
def forward(self, features, targets):
"""
Args:
features: prediction matrix (before softmax) with shape (batch_size, feature_dim)
targets: ground truth labels with shape (batch_size)
ordered: bool type. If the train data per batch are formed as p*k, where p is the num of ids per batch and k is the num of images per id.
ids_per_batch: num of different ids per batch
imgs_per_id: num of images per id
Return:
range_loss
"""
assert features.size(0) == targets.size(0), "features.size(0) is not equal to targets.size(0)"
if self.use_gpu:
features = features.cuda()
targets = targets.cuda()
range_loss, intra_class_loss, inter_class_loss = self._range_loss(features, targets, self.ordered, self.ids_per_batch, self.imgs_per_id)
return range_loss, intra_class_loss, inter_class_loss
if __name__ == '__main__':
use_gpu = False
range_loss = RangeLoss(use_gpu=use_gpu, ids_per_batch=4, imgs_per_id=4)
features = torch.rand(16, 2048)
targets = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3])
if use_gpu:
features = torch.rand(16, 2048).cuda()
targets = torch.Tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]).cuda()
loss = range_loss(features, targets)
print(loss)