107 lines
3.9 KiB
Python
107 lines
3.9 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: liaoxingyu2@jd.com
|
|
"""
|
|
|
|
import glob
|
|
import re
|
|
import urllib
|
|
import zipfile
|
|
|
|
import os.path as osp
|
|
|
|
from utils.iotools import mkdir_if_missing
|
|
from .bases import BaseImageDataset
|
|
|
|
|
|
class DukeMTMCreID(BaseImageDataset):
|
|
"""
|
|
DukeMTMC-reID
|
|
Reference:
|
|
1. Ristani et al. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. ECCVW 2016.
|
|
2. Zheng et al. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro. ICCV 2017.
|
|
URL: https://github.com/layumi/DukeMTMC-reID_evaluation
|
|
|
|
Dataset statistics:
|
|
# identities: 1404 (train + query)
|
|
# images:16522 (train) + 2228 (query) + 17661 (gallery)
|
|
# cameras: 8
|
|
"""
|
|
dataset_dir = 'dukemtmc-reid'
|
|
|
|
def __init__(self, root='/home/haoluo/data', verbose=True, **kwargs):
|
|
super(DukeMTMCreID, self).__init__()
|
|
self.dataset_dir = osp.join(root, self.dataset_dir)
|
|
self.dataset_url = 'http://vision.cs.duke.edu/DukeMTMC/data/misc/DukeMTMC-reID.zip'
|
|
self.train_dir = osp.join(self.dataset_dir, 'DukeMTMC-reID/bounding_box_train')
|
|
self.query_dir = osp.join(self.dataset_dir, 'DukeMTMC-reID/query')
|
|
self.gallery_dir = osp.join(self.dataset_dir, 'DukeMTMC-reID/bounding_box_test')
|
|
|
|
self._download_data()
|
|
self._check_before_run()
|
|
|
|
train = self._process_dir(self.train_dir, relabel=True)
|
|
query = self._process_dir(self.query_dir, relabel=False)
|
|
gallery = self._process_dir(self.gallery_dir, relabel=False)
|
|
|
|
if verbose:
|
|
print("=> DukeMTMC-reID loaded")
|
|
self.print_dataset_statistics(train, query, gallery)
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
|
|
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
|
|
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
|
|
|
|
def _download_data(self):
|
|
if osp.exists(self.dataset_dir):
|
|
print("This dataset has been downloaded.")
|
|
return
|
|
|
|
print("Creating directory {}".format(self.dataset_dir))
|
|
mkdir_if_missing(self.dataset_dir)
|
|
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
|
|
|
|
print("Downloading DukeMTMC-reID dataset")
|
|
urllib.urlretrieve(self.dataset_url, fpath)
|
|
|
|
print("Extracting files")
|
|
zip_ref = zipfile.ZipFile(fpath, 'r')
|
|
zip_ref.extractall(self.dataset_dir)
|
|
zip_ref.close()
|
|
|
|
def _check_before_run(self):
|
|
"""Check if all files are available before going deeper"""
|
|
if not osp.exists(self.dataset_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
|
|
if not osp.exists(self.train_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.train_dir))
|
|
if not osp.exists(self.query_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.query_dir))
|
|
if not osp.exists(self.gallery_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.gallery_dir))
|
|
|
|
def _process_dir(self, dir_path, relabel=False):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
pattern = re.compile(r'([-\d]+)_c(\d)')
|
|
|
|
pid_container = set()
|
|
for img_path in img_paths:
|
|
pid, _ = map(int, pattern.search(img_path).groups())
|
|
pid_container.add(pid)
|
|
pid2label = {pid: label for label, pid in enumerate(pid_container)}
|
|
|
|
dataset = []
|
|
for img_path in img_paths:
|
|
pid, camid = map(int, pattern.search(img_path).groups())
|
|
assert 1 <= camid <= 8
|
|
camid -= 1 # index starts from 0
|
|
if relabel: pid = pid2label[pid]
|
|
dataset.append((img_path, pid, camid))
|
|
|
|
return dataset
|