181 lines
5.9 KiB
Python
181 lines
5.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
|
|
__all__ = ['ResNet_IBN', 'resnet50_ibn_a', 'resnet101_ibn_a',
|
|
'resnet152_ibn_a']
|
|
|
|
|
|
model_urls = {
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
}
|
|
|
|
|
|
class IBN(nn.Module):
|
|
def __init__(self, planes):
|
|
super(IBN, self).__init__()
|
|
half1 = int(planes/2)
|
|
self.half = half1
|
|
half2 = planes - half1
|
|
self.IN = nn.InstanceNorm2d(half1, affine=True)
|
|
self.BN = nn.BatchNorm2d(half2)
|
|
|
|
def forward(self, x):
|
|
split = torch.split(x, self.half, 1)
|
|
out1 = self.IN(split[0].contiguous())
|
|
out2 = self.BN(split[1].contiguous())
|
|
out = torch.cat((out1, out2), 1)
|
|
return out
|
|
|
|
|
|
class Bottleneck_IBN(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None):
|
|
super(Bottleneck_IBN, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
if ibn:
|
|
self.bn1 = IBN(planes)
|
|
else:
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet_IBN(nn.Module):
|
|
|
|
def __init__(self, last_stride, block, layers, num_classes=1000):
|
|
scale = 64
|
|
self.inplanes = scale
|
|
super(ResNet_IBN, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(scale)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, scale, layers[0])
|
|
self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, scale*8, layers[3], stride=last_stride)
|
|
self.avgpool = nn.AvgPool2d(7)
|
|
self.fc = nn.Linear(scale * 8 * block.expansion, num_classes)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.InstanceNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
ibn = True
|
|
if planes == 512:
|
|
ibn = False
|
|
layers.append(block(self.inplanes, planes, ibn, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, ibn))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
# x = self.avgpool(x)
|
|
# x = x.view(x.size(0), -1)
|
|
# x = self.fc(x)
|
|
|
|
return x
|
|
|
|
def load_param(self, model_path):
|
|
param_dict = torch.load(model_path)
|
|
for i in param_dict:
|
|
if 'fc' in i:
|
|
continue
|
|
self.state_dict()[i].copy_(param_dict[i])
|
|
|
|
|
|
def resnet50_ibn_a(last_stride, pretrained=False, **kwargs):
|
|
"""Constructs a ResNet-50 model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 6, 3], **kwargs)
|
|
if pretrained:
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
|
|
return model
|
|
|
|
|
|
def resnet101_ibn_a(last_stride, pretrained=False, **kwargs):
|
|
"""Constructs a ResNet-101 model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 4, 23, 3], **kwargs)
|
|
if pretrained:
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
|
|
return model
|
|
|
|
|
|
def resnet152_ibn_a(last_stride, pretrained=False, **kwargs):
|
|
"""Constructs a ResNet-152 model.
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = ResNet_IBN(last_stride, Bottleneck_IBN, [3, 8, 36, 3], **kwargs)
|
|
if pretrained:
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
|
|
return model |