162 lines
5.7 KiB
Python
162 lines
5.7 KiB
Python
from yacs.config import CfgNode as CN
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Convention about Training / Test specific parameters
|
|
# -----------------------------------------------------------------------------
|
|
# Whenever an argument can be either used for training or for testing, the
|
|
# corresponding name will be post-fixed by a _TRAIN for a training parameter,
|
|
# or _TEST for a test-specific parameter.
|
|
# For example, the number of images during training will be
|
|
# IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be
|
|
# IMAGES_PER_BATCH_TEST
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Config definition
|
|
# -----------------------------------------------------------------------------
|
|
|
|
_C = CN()
|
|
|
|
_C.MODEL = CN()
|
|
# Using cuda or cpu for training
|
|
_C.MODEL.DEVICE = "cuda"
|
|
# ID number of GPU
|
|
_C.MODEL.DEVICE_ID = '0'
|
|
# Name of backbone
|
|
_C.MODEL.NAME = 'resnet50'
|
|
# Last stride of backbone
|
|
_C.MODEL.LAST_STRIDE = 1
|
|
# Path to pretrained model of backbone
|
|
_C.MODEL.PRETRAIN_PATH = ''
|
|
# Use ImageNet pretrained model to initialize backbone or use self trained model to initialize the whole model
|
|
# Options: 'imagenet' or 'self'
|
|
_C.MODEL.PRETRAIN_CHOICE = 'imagenet'
|
|
# If train with BNNeck, options: 'bnneck' or 'no'
|
|
_C.MODEL.NECK = 'bnneck'
|
|
# If train loss include center loss, options: 'yes' or 'no'. Loss with center loss has different optimizer configuration
|
|
_C.MODEL.IF_WITH_CENTER = 'no'
|
|
# The loss type of metric loss
|
|
# options:'triplet','cluster','triplet_cluster','center','range_center','triplet_center','triplet_range_center'
|
|
_C.MODEL.METRIC_LOSS_TYPE = 'triplet'
|
|
# For example, if loss type is cross entropy loss + triplet loss + center loss
|
|
# the setting should be: _C.MODEL.METRIC_LOSS_TYPE = 'triplet_center' and _C.MODEL.IF_WITH_CENTER = 'yes'
|
|
|
|
# If train with label smooth, options: 'on', 'off'
|
|
_C.MODEL.IF_LABELSMOOTH = 'on'
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# INPUT
|
|
# -----------------------------------------------------------------------------
|
|
_C.INPUT = CN()
|
|
# Size of the image during training
|
|
_C.INPUT.SIZE_TRAIN = [384, 128]
|
|
# Size of the image during test
|
|
_C.INPUT.SIZE_TEST = [384, 128]
|
|
# Random probability for image horizontal flip
|
|
_C.INPUT.PROB = 0.5
|
|
# Random probability for random erasing
|
|
_C.INPUT.RE_PROB = 0.5
|
|
# Values to be used for image normalization
|
|
_C.INPUT.PIXEL_MEAN = [0.485, 0.456, 0.406]
|
|
# Values to be used for image normalization
|
|
_C.INPUT.PIXEL_STD = [0.229, 0.224, 0.225]
|
|
# Value of padding size
|
|
_C.INPUT.PADDING = 10
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Dataset
|
|
# -----------------------------------------------------------------------------
|
|
_C.DATASETS = CN()
|
|
# List of the dataset names for training, as present in paths_catalog.py
|
|
_C.DATASETS.NAMES = ('market1501')
|
|
# Root directory where datasets should be used (and downloaded if not found)
|
|
_C.DATASETS.ROOT_DIR = ('./data')
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# DataLoader
|
|
# -----------------------------------------------------------------------------
|
|
_C.DATALOADER = CN()
|
|
# Number of data loading threads
|
|
_C.DATALOADER.NUM_WORKERS = 8
|
|
# Sampler for data loading
|
|
_C.DATALOADER.SAMPLER = 'softmax'
|
|
# Number of instance for one batch
|
|
_C.DATALOADER.NUM_INSTANCE = 16
|
|
|
|
# ---------------------------------------------------------------------------- #
|
|
# Solver
|
|
# ---------------------------------------------------------------------------- #
|
|
_C.SOLVER = CN()
|
|
# Name of optimizer
|
|
_C.SOLVER.OPTIMIZER_NAME = "Adam"
|
|
# Number of max epoches
|
|
_C.SOLVER.MAX_EPOCHS = 50
|
|
# Base learning rate
|
|
_C.SOLVER.BASE_LR = 3e-4
|
|
# Factor of learning bias
|
|
_C.SOLVER.BIAS_LR_FACTOR = 2
|
|
# Momentum
|
|
_C.SOLVER.MOMENTUM = 0.9
|
|
# Margin of triplet loss
|
|
_C.SOLVER.MARGIN = 0.3
|
|
# Margin of cluster ;pss
|
|
_C.SOLVER.CLUSTER_MARGIN = 0.3
|
|
# Learning rate of SGD to learn the centers of center loss
|
|
_C.SOLVER.CENTER_LR = 0.5
|
|
# Balanced weight of center loss
|
|
_C.SOLVER.CENTER_LOSS_WEIGHT = 0.0005
|
|
# Settings of range loss
|
|
_C.SOLVER.RANGE_K = 2
|
|
_C.SOLVER.RANGE_MARGIN = 0.3
|
|
_C.SOLVER.RANGE_ALPHA = 0
|
|
_C.SOLVER.RANGE_BETA = 1
|
|
_C.SOLVER.RANGE_LOSS_WEIGHT = 1
|
|
|
|
# Settings of weight decay
|
|
_C.SOLVER.WEIGHT_DECAY = 0.0005
|
|
_C.SOLVER.WEIGHT_DECAY_BIAS = 0.
|
|
|
|
# decay rate of learning rate
|
|
_C.SOLVER.GAMMA = 0.1
|
|
# decay step of learning rate
|
|
_C.SOLVER.STEPS = (30, 55)
|
|
|
|
# warm up factor
|
|
_C.SOLVER.WARMUP_FACTOR = 1.0 / 3
|
|
# iterations of warm up
|
|
_C.SOLVER.WARMUP_ITERS = 500
|
|
# method of warm up, option: 'constant','linear'
|
|
_C.SOLVER.WARMUP_METHOD = "linear"
|
|
|
|
# epoch number of saving checkpoints
|
|
_C.SOLVER.CHECKPOINT_PERIOD = 50
|
|
# iteration of display training log
|
|
_C.SOLVER.LOG_PERIOD = 100
|
|
# epoch number of validation
|
|
_C.SOLVER.EVAL_PERIOD = 50
|
|
|
|
# Number of images per batch
|
|
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
|
|
# see 2 images per batch
|
|
_C.SOLVER.IMS_PER_BATCH = 64
|
|
|
|
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
|
|
# see 2 images per batch
|
|
_C.TEST = CN()
|
|
# Number of images per batch during test
|
|
_C.TEST.IMS_PER_BATCH = 128
|
|
# If test with re-ranking, options: 'yes','no'
|
|
_C.TEST.RE_RANKING = 'no'
|
|
# Path to trained model
|
|
_C.TEST.WEIGHT = ""
|
|
# Which feature of BNNeck to be used for test, before or after BNNneck, options: 'before' or 'after'
|
|
_C.TEST.NECK_FEAT = 'after'
|
|
# Whether feature is nomalized before test, if yes, it is equivalent to cosine distance
|
|
_C.TEST.FEAT_NORM = 'yes'
|
|
|
|
# ---------------------------------------------------------------------------- #
|
|
# Misc options
|
|
# ---------------------------------------------------------------------------- #
|
|
# Path to checkpoint and saved log of trained model
|
|
_C.OUTPUT_DIR = ""
|