reid-strong-baseline/tools/train.py

156 lines
6.4 KiB
Python

# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import argparse
import os
import sys
import torch
from torch.backends import cudnn
sys.path.append('.')
from config import cfg
from data import make_data_loader
from engine.trainer import do_train, do_train_with_center
from modeling import build_model
from layers import make_loss, make_loss_with_center
from solver import make_optimizer, make_optimizer_with_center, WarmupMultiStepLR
from utils.logger import setup_logger
def train(cfg):
# prepare dataset
train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)
# prepare model
model = build_model(cfg, num_classes)
if cfg.MODEL.IF_WITH_CENTER == 'no':
print('Train without center loss, the loss type is', cfg.MODEL.METRIC_LOSS_TYPE)
optimizer = make_optimizer(cfg, model)
# scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
# cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
loss_func = make_loss(cfg, num_classes) # modified by gu
# Add for using self trained model
if cfg.MODEL.PRETRAIN_CHOICE == 'self':
start_epoch = eval(cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')[-1])
print('Start epoch:', start_epoch)
path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace('model', 'optimizer')
print('Path to the checkpoint of optimizer:', path_to_optimizer)
model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
optimizer.load_state_dict(torch.load(path_to_optimizer))
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD, start_epoch)
elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
start_epoch = 0
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
else:
print('Only support pretrain_choice for imagenet and self, but got {}'.format(cfg.MODEL.PRETRAIN_CHOICE))
arguments = {}
do_train(
cfg,
model,
train_loader,
val_loader,
optimizer,
scheduler, # modify for using self trained model
loss_func,
num_query,
start_epoch # add for using self trained model
)
elif cfg.MODEL.IF_WITH_CENTER == 'yes':
print('Train with center loss, the loss type is', cfg.MODEL.METRIC_LOSS_TYPE)
loss_func, center_criterion = make_loss_with_center(cfg, num_classes) # modified by gu
optimizer, optimizer_center = make_optimizer_with_center(cfg, model, center_criterion)
# scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
# cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
arguments = {}
# Add for using self trained model
if cfg.MODEL.PRETRAIN_CHOICE == 'self':
start_epoch = eval(cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')[-1])
print('Start epoch:', start_epoch)
path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace('model', 'optimizer')
print('Path to the checkpoint of optimizer:', path_to_optimizer)
path_to_optimizer_center = cfg.MODEL.PRETRAIN_PATH.replace('model', 'optimizer_center')
print('Path to the checkpoint of optimizer_center:', path_to_optimizer_center)
model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
optimizer.load_state_dict(torch.load(path_to_optimizer))
optimizer_center.load_state_dict(torch.load(path_to_optimizer_center))
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD, start_epoch)
elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
start_epoch = 0
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
else:
print('Only support pretrain_choice for imagenet and self, but got {}'.format(cfg.MODEL.PRETRAIN_CHOICE))
do_train_with_center(
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler, # modify for using self trained model
loss_func,
num_query,
start_epoch # add for using self trained model
)
else:
print("Unsupported value for cfg.MODEL.IF_WITH_CENTER {}, only support yes or no!\n".format(cfg.MODEL.IF_WITH_CENTER))
def main():
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, 0)
logger.info("Using {} GPUS".format(num_gpus))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DEVICE == "cuda":
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID # new add by gu
cudnn.benchmark = True
train(cfg)
if __name__ == '__main__':
main()