<div align="center">
  <p>
    <a href="https://www.ultralytics.com/blog/ultralytics-yolo11-has-arrived-redefine-whats-possible-in-ai" target="_blank">
      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
  </p>

[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar) <br>

<div>
    <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
    <a href="https://pepy.tech/projects/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
    <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
    <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
    <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
    <br>
    <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
    <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
    <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
    <a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
</div>
</div>
<br>

[Ultralytics](https://www.ultralytics.com/) 基于多年在计算机视觉和人工智能领域的基础研究,创造了尖端的、最先进的(SOTA)[YOLO 模型](https://www.ultralytics.com/yolo)。我们的模型不断更新以提高性能和灵活性,具有**速度快**、**精度高**和**易于使用**的特点。它们在[目标检测](https://docs.ultralytics.com/tasks/detect/)、[跟踪](https://docs.ultralytics.com/modes/track/)、[实例分割](https://docs.ultralytics.com/tasks/segment/)、[图像分类](https://docs.ultralytics.com/tasks/classify/)和[姿态估计](https://docs.ultralytics.com/tasks/pose/)任务中表现出色。

在 [Ultralytics 文档](https://docs.ultralytics.com/)中查找详细文档。通过 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues/new/choose) 获取支持。加入 [Discord](https://discord.com/invite/ultralytics)、[Reddit](https://www.reddit.com/r/ultralytics/) 和 [Ultralytics 社区论坛](https://community.ultralytics.com/)参与讨论!

如需商业用途,请在 [Ultralytics 授权许可](https://www.ultralytics.com/license)申请企业许可证。

<a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
</a>

<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>

## 📄 文档

请参阅下文了解快速安装和使用示例。有关训练、验证、预测和部署的全面指南,请参阅我们的完整 [Ultralytics 文档](https://docs.ultralytics.com/)。

<details open>
<summary>安装</summary>

在 [**Python>=3.8**](https://www.python.org/) 环境中安装 `ultralytics` 包,包括所有[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml),并确保 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/)。

[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)

```bash
pip install ultralytics
```

有关其他安装方法,包括 [Conda](https://anaconda.org/conda-forge/ultralytics)、[Docker](https://hub.docker.com/r/ultralytics/ultralytics) 以及通过 Git 从源代码构建,请查阅[快速入门指南](https://docs.ultralytics.com/quickstart/)。

[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)

</details>

<details open>
<summary>使用方法</summary>

### CLI

您可以直接通过命令行界面(CLI)使用 `yolo` 命令来运行 Ultralytics YOLO:

```bash
# 使用预训练的 YOLO 模型(例如 YOLO11n)对图像进行预测
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
```

`yolo` 命令支持各种任务和模式,并接受额外的参数,如 `imgsz=640`。浏览 YOLO [CLI 文档](https://docs.ultralytics.com/usage/cli/)获取更多示例。

### Python

Ultralytics YOLO 也可以直接集成到您的 Python 项目中。它接受与 CLI 相同的[配置参数](https://docs.ultralytics.com/usage/cfg/):

```python
from ultralytics import YOLO

# 加载一个预训练的 YOLO11n 模型
model = YOLO("yolo11n.pt")

# 在 COCO8 数据集上训练模型 100 个周期
train_results = model.train(
    data="coco8.yaml",  # 数据集配置文件路径
    epochs=100,  # 训练周期数
    imgsz=640,  # 训练图像尺寸
    device="cpu",  # 运行设备(例如 'cpu', 0, [0,1,2,3])
)

# 评估模型在验证集上的性能
metrics = model.val()

# 对图像执行目标检测
results = model("path/to/image.jpg")  # 对图像进行预测
results[0].show()  # 显示结果

# 将模型导出为 ONNX 格式以进行部署
path = model.export(format="onnx")  # 返回导出模型的路径
```

在 YOLO [Python 文档](https://docs.ultralytics.com/usage/python/)中发现更多示例。

</details>

## ✨ 模型

Ultralytics 支持广泛的 YOLO 模型,从早期的版本如 [YOLOv3](https://docs.ultralytics.com/models/yolov3/) 到最新的 [YOLO11](https://docs.ultralytics.com/models/yolo11/)。下表展示了在 [COCO](https://docs.ultralytics.com/datasets/detect/coco/) 数据集上预训练的 YOLO11 模型,用于[检测](https://docs.ultralytics.com/tasks/detect/)、[分割](https://docs.ultralytics.com/tasks/segment/)和[姿态估计](https://docs.ultralytics.com/tasks/pose/)任务。此外,还提供了在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上预训练的[分类](https://docs.ultralytics.com/tasks/classify/)模型。[跟踪](https://docs.ultralytics.com/modes/track/)模式与所有检测、分割和姿态模型兼容。所有[模型](https://docs.ultralytics.com/models/)在首次使用时都会自动从最新的 Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。

<a href="https://docs.ultralytics.com/tasks/" target="_blank">
    <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
</a>
<br>
<br>

<details open><summary>检测 (COCO)</summary>

浏览[检测文档](https://docs.ultralytics.com/tasks/detect/)获取使用示例。这些模型在 [COCO 数据集](https://cocodataset.org/)上训练,包含 80 个对象类别。

| 模型                                                                                 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>T4 TensorRT10<br>(毫秒) | 参数<br><sup>(百万) | FLOPs<br><sup>(十亿) |
| ------------------------------------------------------------------------------------ | ------------------- | -------------------- | ------------------------------- | ------------------------------------ | ------------------- | -------------------- |
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640                 | 39.5                 | 56.1 ± 0.8                      | 1.5 ± 0.0                            | 2.6                 | 6.5                  |
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640                 | 47.0                 | 90.0 ± 1.2                      | 2.5 ± 0.0                            | 9.4                 | 21.5                 |
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640                 | 51.5                 | 183.2 ± 2.0                     | 4.7 ± 0.1                            | 20.1                | 68.0                 |
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640                 | 53.4                 | 238.6 ± 1.4                     | 6.2 ± 0.1                            | 25.3                | 86.9                 |
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640                 | 54.7                 | 462.8 ± 6.7                     | 11.3 ± 0.2                           | 56.9                | 194.9                |

- **mAP<sup>val</sup>** 值指的是在 [COCO val2017](https://cocodataset.org/) 数据集上的单模型单尺度性能。详见 [YOLO 性能指标](https://docs.ultralytics.com/guides/yolo-performance-metrics/)。<br>使用 `yolo val detect data=coco.yaml device=0` 复现结果。
- **速度** 指标是在 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例上对 COCO val 图像进行平均测量的。CPU 速度使用 [ONNX](https://onnx.ai/) 导出进行测量。GPU 速度使用 [TensorRT](https://developer.nvidia.com/tensorrt) 导出进行测量。<br>使用 `yolo val detect data=coco.yaml batch=1 device=0|cpu` 复现结果。

</details>

<details><summary>分割 (COCO)</summary>

请参阅[分割文档](https://docs.ultralytics.com/tasks/segment/)获取使用示例。这些模型在 [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/) 数据集上训练,包含 80 个类别。

| 模型                                                                                         | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>T4 TensorRT10<br>(毫秒) | 参数<br><sup>(百万) | FLOPs<br><sup>(十亿) |
| -------------------------------------------------------------------------------------------- | ------------------- | -------------------- | --------------------- | ------------------------------- | ------------------------------------ | ------------------- | -------------------- |
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640                 | 38.9                 | 32.0                  | 65.9 ± 1.1                      | 1.8 ± 0.0                            | 2.9                 | 10.4                 |
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640                 | 46.6                 | 37.8                  | 117.6 ± 4.9                     | 2.9 ± 0.0                            | 10.1                | 35.5                 |
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640                 | 51.5                 | 41.5                  | 281.6 ± 1.2                     | 6.3 ± 0.1                            | 22.4                | 123.3                |
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640                 | 53.4                 | 42.9                  | 344.2 ± 3.2                     | 7.8 ± 0.2                            | 27.6                | 142.2                |
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640                 | 54.7                 | 43.8                  | 664.5 ± 3.2                     | 15.8 ± 0.7                           | 62.1                | 319.0                |

- **mAP<sup>val</sup>** 值指的是在 [COCO val2017](https://cocodataset.org/) 数据集上的单模型单尺度性能。详见 [YOLO 性能指标](https://docs.ultralytics.com/guides/yolo-performance-metrics/)。<br>使用 `yolo val segment data=coco.yaml device=0` 复现结果。
- **速度** 指标是在 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例上对 COCO val 图像进行平均测量的。CPU 速度使用 [ONNX](https://onnx.ai/) 导出进行测量。GPU 速度使用 [TensorRT](https://developer.nvidia.com/tensorrt) 导出进行测量。<br>使用 `yolo val segment data=coco.yaml batch=1 device=0|cpu` 复现结果。

</details>

<details><summary>分类 (ImageNet)</summary>

请查阅[分类文档](https://docs.ultralytics.com/tasks/classify/)获取使用示例。这些模型在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上训练,涵盖 1000 个类别。

| 模型                                                                                         | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>T4 TensorRT10<br>(毫秒) | 参数<br><sup>(百万) | FLOPs<br><sup>(十亿) @ 224 |
| -------------------------------------------------------------------------------------------- | ------------------- | ---------------- | ---------------- | ------------------------------- | ------------------------------------ | ------------------- | -------------------------- |
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224                 | 70.0             | 89.4             | 5.0 ± 0.3                       | 1.1 ± 0.0                            | 1.6                 | 0.5                        |
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224                 | 75.4             | 92.7             | 7.9 ± 0.2                       | 1.3 ± 0.0                            | 5.5                 | 1.6                        |
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224                 | 77.3             | 93.9             | 17.2 ± 0.4                      | 2.0 ± 0.0                            | 10.4                | 5.0                        |
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224                 | 78.3             | 94.3             | 23.2 ± 0.3                      | 2.8 ± 0.0                            | 12.9                | 6.2                        |
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224                 | 79.5             | 94.9             | 41.4 ± 0.9                      | 3.8 ± 0.0                            | 28.4                | 13.7                       |

- **acc** 值表示模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。<br>使用 `yolo val classify data=path/to/ImageNet device=0` 复现结果。
- **速度** 指标是在 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例上对 ImageNet val 图像进行平均测量的。CPU 速度使用 [ONNX](https://onnx.ai/) 导出进行测量。GPU 速度使用 [TensorRT](https://developer.nvidia.com/tensorrt) 导出进行测量。<br>使用 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现结果。

</details>

<details><summary>姿态估计 (COCO)</summary>

请参阅[姿态估计文档](https://docs.ultralytics.com/tasks/pose/)获取使用示例。这些模型在 [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/) 数据集上训练,专注于 'person' 类别。

| 模型                                                                                           | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>T4 TensorRT10<br>(毫秒) | 参数<br><sup>(百万) | FLOPs<br><sup>(十亿) |
| ---------------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------ | ------------------------------- | ------------------------------------ | ------------------- | -------------------- |
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640                 | 50.0                  | 81.0               | 52.4 ± 0.5                      | 1.7 ± 0.0                            | 2.9                 | 7.6                  |
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640                 | 58.9                  | 86.3               | 90.5 ± 0.6                      | 2.6 ± 0.0                            | 9.9                 | 23.2                 |
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640                 | 64.9                  | 89.4               | 187.3 ± 0.8                     | 4.9 ± 0.1                            | 20.9                | 71.7                 |
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640                 | 66.1                  | 89.9               | 247.7 ± 1.1                     | 6.4 ± 0.1                            | 26.2                | 90.7                 |
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640                 | 69.5                  | 91.1               | 488.0 ± 13.9                    | 12.1 ± 0.2                           | 58.8                | 203.3                |

- **mAP<sup>val</sup>** 值指的是在 [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) 数据集上的单模型单尺度性能。详见 [YOLO 性能指标](https://docs.ultralytics.com/guides/yolo-performance-metrics/)。<br>使用 `yolo val pose data=coco-pose.yaml device=0` 复现结果。
- **速度** 指标是在 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例上对 COCO val 图像进行平均测量的。CPU 速度使用 [ONNX](https://onnx.ai/) 导出进行测量。GPU 速度使用 [TensorRT](https://developer.nvidia.com/tensorrt) 导出进行测量。<br>使用 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu` 复现结果。

</details>

<details><summary>定向边界框 (DOTAv1)</summary>

请查阅 [OBB 文档](https://docs.ultralytics.com/tasks/obb/)获取使用示例。这些模型在 [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) 数据集上训练,包含 15 个类别。

| 模型                                                                                         | 尺寸<br><sup>(像素) | mAP<sup>test<br>50 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>T4 TensorRT10<br>(毫秒) | 参数<br><sup>(百万) | FLOPs<br><sup>(十亿) |
| -------------------------------------------------------------------------------------------- | ------------------- | ------------------ | ------------------------------- | ------------------------------------ | ------------------- | -------------------- |
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024                | 78.4               | 117.6 ± 0.8                     | 4.4 ± 0.0                            | 2.7                 | 17.2                 |
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024                | 79.5               | 219.4 ± 4.0                     | 5.1 ± 0.0                            | 9.7                 | 57.5                 |
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024                | 80.9               | 562.8 ± 2.9                     | 10.1 ± 0.4                           | 20.9                | 183.5                |
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024                | 81.0               | 712.5 ± 5.0                     | 13.5 ± 0.6                           | 26.2                | 232.0                |
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024                | 81.3               | 1408.6 ± 7.7                    | 28.6 ± 1.0                           | 58.8                | 520.2                |

- **mAP<sup>test</sup>** 值指的是在 [DOTAv1 测试集](https://captain-whu.github.io/DOTA/dataset.html)上的单模型多尺度性能。<br>通过 `yolo val obb data=DOTAv1.yaml device=0 split=test` 复现结果,并将合并后的结果提交到 [DOTA 评估服务器](https://captain-whu.github.io/DOTA/evaluation.html)。
- **速度** 指标是在 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例上对 [DOTAv1 val 图像](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10)进行平均测量的。CPU 速度使用 [ONNX](https://onnx.ai/) 导出进行测量。GPU 速度使用 [TensorRT](https://developer.nvidia.com/tensorrt) 导出进行测量。<br>通过 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu` 复现结果。

</details>

## 🧩 集成

我们与领先 AI 平台的关键集成扩展了 Ultralytics 产品的功能,增强了数据集标注、训练、可视化和模型管理等任务。了解 Ultralytics 如何与 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/)、[Comet ML](https://docs.ultralytics.com/integrations/comet/)、[Roboflow](https://docs.ultralytics.com/integrations/roboflow/) 和 [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 等合作伙伴协作,优化您的 AI 工作流程。在 [Ultralytics 集成](https://docs.ultralytics.com/integrations/)了解更多信息。

<a href="https://docs.ultralytics.com/integrations/" target="_blank">
    <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
</a>
<br>
<br>

<div align="center">
  <a href="https://www.ultralytics.com/hub">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://docs.ultralytics.com/integrations/comet/">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://docs.ultralytics.com/integrations/neural-magic/">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
</div>

|                                              Ultralytics HUB 🌟                                               |                                              Weights & Biases                                               |                                                               Comet                                                                |                                                       Neural Magic                                                       |
| :-----------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------: |
| 简化 YOLO 工作流程:使用 [Ultralytics HUB](https://hub.ultralytics.com/) 轻松进行标注、训练和部署。立即试用! | 使用 [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/) 跟踪实验、超参数和结果。 | 永久免费的 [Comet ML](https://docs.ultralytics.com/integrations/comet/) 让您能够保存 YOLO 模型、恢复训练并交互式地可视化预测结果。 | 使用 [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/),将 YOLO 推理速度提高多达 6 倍。 |

## 🌟 Ultralytics HUB

通过 [Ultralytics HUB](https://hub.ultralytics.com/) 体验无缝 AI,这是一个集数据可视化、训练 YOLO 模型和部署于一体的平台——无需编码。使用我们尖端的平台和用户友好的 [Ultralytics App](https://www.ultralytics.com/app-install),轻松将图像转化为可操作的见解,并将您的 AI 愿景变为现实。立即**免费**开始您的旅程!

<a href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>

## 🤝 贡献

我们依靠社区协作蓬勃发展!没有像您这样的开发者的贡献,Ultralytics YOLO 就不会成为如今最先进的框架。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing/)开始贡献。我们也欢迎您的反馈——通过完成我们的[调查问卷](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)分享您的体验。非常**感谢** 🙏 每一位贡献者!

<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=1280 -->

[![Ultralytics open-source contributors](https://raw.githubusercontent.com/ultralytics/assets/main/im/image-contributors.png)](https://github.com/ultralytics/ultralytics/graphs/contributors)

我们期待您的贡献,帮助 Ultralytics 生态系统变得更好!

## 📜 许可证

Ultralytics 提供两种许可选项以满足不同需求:

- **AGPL-3.0 许可证**:这种经 [OSI 批准](https://opensource.org/license)的开源许可证非常适合学生、研究人员和爱好者。它鼓励开放协作和知识共享。有关完整详细信息,请参阅 [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件。
- **Ultralytics 企业许可证**:专为商业用途设计,此许可证允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,绕过 AGPL-3.0 的开源要求。如果您的使用场景涉及商业部署,请通过 [Ultralytics 授权许可](https://www.ultralytics.com/license)与我们联系。

## 📞 联系方式

有关 Ultralytics 软件的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues)。如有疑问、讨论和社区支持,请加入我们在 [Discord](https://discord.com/invite/ultralytics)、[Reddit](https://www.reddit.com/r/ultralytics/?rdt=44154) 和 [Ultralytics 社区论坛](https://community.ultralytics.com/)上的活跃社区。我们随时为您提供有关 Ultralytics 的所有帮助!

<br>
<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>