…
|
||
---|---|---|
.. | ||
src | ||
Cargo.toml | ||
README.md |
README.md
YOLOv8-ONNXRuntime-Rust for All Key YOLO Tasks
This repository provides a Rust demonstration for performing Ultralytics YOLOv8 tasks like Classification, Segmentation, Detection, Pose Estimation, and Oriented Bounding Box (OBB) detection using the ONNXRuntime.
✨ Recently Updated
- Added YOLOv8-OBB demo.
- Updated ONNXRuntime dependency to 1.19.x.
Newly updated YOLOv8 example code is located in this repository.
🚀 Features
- Supports
Classification
,Segmentation
,Detection
,Pose(Keypoints)-Detection
, andOBB
tasks. - Supports
FP16
&FP32
ONNX models. - Supports
CPU
,CUDA
, andTensorRT
execution providers to accelerate computation. - Supports dynamic input shapes (
batch
,width
,height
).
🛠️ Installation
1. Install Rust
Please follow the official Rust installation guide: https://www.rust-lang.org/tools/install.
2. ONNXRuntime Linking
-
For detailed setup instructions, refer to the ORT documentation.
-
For Linux or macOS Users:
- Download the ONNX Runtime package from the Releases page.
- Set up the library path by exporting the
ORT_DYLIB_PATH
environment variable:export ORT_DYLIB_PATH=/path/to/onnxruntime/lib/libonnxruntime.so.1.19.0 # Adjust version/path as needed
3. [Optional] Install CUDA & CuDNN & TensorRT
- The CUDA execution provider requires CUDA v11.6+.
- The TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+. You may also need cuDNN.
▶️ Get Started
1. Export the Ultralytics YOLOv8 ONNX Models
First, install the Ultralytics package:
pip install -U ultralytics
Then, export the desired Ultralytics YOLOv8 models to the ONNX format. See the Export documentation for more details.
# Export ONNX model with dynamic shapes (recommended for flexibility)
yolo export model=yolov8m.pt format=onnx simplify dynamic
yolo export model=yolov8m-cls.pt format=onnx simplify dynamic
yolo export model=yolov8m-pose.pt format=onnx simplify dynamic
yolo export model=yolov8m-seg.pt format=onnx simplify dynamic
# yolo export model=yolov8m-obb.pt format=onnx simplify dynamic # Add OBB export if needed
# Export ONNX model with constant shapes (if dynamic shapes are not required)
# yolo export model=yolov8m.pt format=onnx simplify
# yolo export model=yolov8m-cls.pt format=onnx simplify
# yolo export model=yolov8m-pose.pt format=onnx simplify
# yolo export model=yolov8m-seg.pt format=onnx simplify
# yolo export model=yolov8m-obb.pt format=onnx simplify
2. Run Inference
This command will perform inference using the specified ONNX model on the source image using the CPU.
cargo run --release -- --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
Using GPU Acceleration
Set --cuda
to use the CUDA execution provider for faster inference on NVIDIA GPUs.
cargo run --release -- --cuda --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
Set --trt
to use the TensorRT execution provider. You can also set --fp16
simultaneously to leverage the TensorRT FP16 engine for potentially even greater speed, especially on compatible hardware.
cargo run --release -- --trt --fp16 --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
Specifying Device and Batch Size
Set --device_id
to select a specific GPU device. If the specified device ID is invalid (e.g., setting device_id 1
when only one GPU exists), ort
will automatically fall back to the CPU
execution provider without causing a panic.
cargo run --release -- --cuda --device_id 0 --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
Set --batch
to perform inference with a specific batch size.
cargo run --release -- --cuda --batch 2 --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
If you're using --trt
with a model exported with dynamic batch dimensions, you can explicitly specify the minimum, optimal, and maximum batch sizes for TensorRT optimization using --batch-min
, --batch
, and --batch-max
. Refer to the TensorRT Execution Provider documentation for details.
Dynamic Image Size
Set --height
and --width
to perform inference with dynamic image sizes. Note: The ONNX model must have been exported with dynamic input shapes (dynamic=True
).
cargo run --release -- --cuda --width 480 --height 640 --model MODEL_PATH_dynamic.onnx --source SOURCE_IMAGE.jpg
Profiling Performance
Set --profile
to measure the time consumed in each stage of the inference pipeline (preprocessing, H2D transfer, inference, D2H transfer, postprocessing). Note: Models often require a few "warm-up" runs (1-3 iterations) before reaching optimal performance. Ensure you run the command enough times to get a stable performance evaluation.
cargo run --release -- --trt --fp16 --profile --model MODEL_PATH.onnx --source SOURCE_IMAGE.jpg
Example Profile Output (yolov8m.onnx, batch=1, 3 runs, trt, fp16, RTX 3060Ti):
==> 0 # Warm-up run
[Model Preprocess]: 12.75788ms
[ORT H2D]: 237.118µs
[ORT Inference]: 507.895469ms
[ORT D2H]: 191.655µs
[Model Inference]: 508.34589ms
[Model Postprocess]: 1.061122ms
==> 1 # Stable run
[Model Preprocess]: 13.658655ms
[ORT H2D]: 209.975µs
[ORT Inference]: 5.12372ms
[ORT D2H]: 182.389µs
[Model Inference]: 5.530022ms
[Model Postprocess]: 1.04851ms
==> 2 # Stable run
[Model Preprocess]: 12.475332ms
[ORT H2D]: 246.127µs
[ORT Inference]: 5.048432ms
[ORT D2H]: 187.117µs
[Model Inference]: 5.493119ms
[Model Postprocess]: 1.040906ms
Other Options
--conf
: Confidence threshold for detections [default: 0.3].--iou
: IoU (Intersection over Union) threshold for Non-Maximum Suppression (NMS) [default: 0.45].--kconf
: Confidence threshold for keypoints (in Pose Estimation) [default: 0.55].--plot
: Plot the inference results with random RGB colors and save the output image to theruns
directory.
You can view all available command-line arguments by running:
# Clone the repository if you haven't already
# git clone https://github.com/ultralytics/ultralytics
# cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust
cargo run --release -- --help
🖼️ Examples
Classification
Running a dynamic shape ONNX classification model on the CPU
with a specific image size (--height 224 --width 224
). The plotted result image will be saved in the runs
directory.
cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile
Example output:
Summary:
> Task: Classify (Ultralytics 8.0.217) # Version might differ
> EP: Cpu
> Dtype: Float32
> Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)
> nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45
[Model Preprocess]: 16.363477ms
[ORT H2D]: 50.722µs
[ORT Inference]: 16.295808ms
[ORT D2H]: 8.37µs
[Model Inference]: 16.367046ms
[Model Postprocess]: 3.527µs
[
YOLOResult {
Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]), # Class IDs and confidences
Bboxes: None,
Keypoints: None,
Masks: None,
},
]
Object Detection
Using the CUDA
execution provider and a dynamic image size (--height 640 --width 480
).
cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480
Pose Detection
Using the TensorRT
execution provider.
cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot
Instance Segmentation
Using the TensorRT
execution provider with an FP16 model (--fp16
).
cargo run --release -- --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot
🤝 Contributing
Contributions are welcome! If you find any issues or have suggestions for improvement, please feel free to open an issue or submit a pull request to the main Ultralytics repository.