yolov5/models/yolo.py

276 lines
12 KiB
Python
Raw Normal View History

2020-05-30 08:04:54 +08:00
import argparse
import logging
import sys
2020-07-14 05:35:47 +08:00
from copy import deepcopy
2020-05-30 08:04:54 +08:00
2020-12-06 19:41:37 +08:00
sys.path.append('./') # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)
from models.common import *
2021-01-30 03:25:01 +08:00
from models.experimental import *
from utils.autoanchor import check_anchor_order
from utils.general import make_divisible, check_file, set_logging
2020-10-16 02:10:08 +08:00
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
select_device, copy_attr
2020-05-30 08:04:54 +08:00
try:
import thop # for FLOPS computation
except ImportError:
thop = None
2020-05-30 08:04:54 +08:00
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
2020-05-30 08:04:54 +08:00
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
2020-05-30 08:04:54 +08:00
def forward(self, x):
2020-06-12 12:54:01 +08:00
# x = x.copy() # for profiling
2020-05-30 08:04:54 +08:00
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
2020-05-30 08:04:54 +08:00
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
2020-06-05 06:23:03 +08:00
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
2020-05-30 08:04:54 +08:00
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
Update yolo.py (#2120) * Avoid mutable state in Detect * LoadImages() pathlib update (#2140) * Unique *.cache filenames fix (#2134) * fix #2121 * Update test.py * Update train.py * Update autoanchor.py * Update datasets.py * Update log_dataset.py * Update datasets.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update train.py test batch_size (#2148) * Update train.py * Update loss.py * Update train.py (#2149) * Linear LR scheduler option (#2150) * Linear LR scheduler option * Update train.py * Update data-autodownload background tasks (#2154) * Update get_coco.sh * Update get_voc.sh * Update detect.py (#2167) Without this cv2.imshow opens a window but nothing is visible * Update requirements.txt (#2173) * Update utils/datasets.py to support .webp files (#2174) Simply added 'webp' as an image format to the img_formats array so that webp image files can be used as training data. * Changed socket port and added timeout (#2176) * PyTorch Hub results.save('path/to/dir') (#2179) * YOLOv5 Segmentation Dataloader Updates (#2188) * Update C3 module * Update C3 module * Update C3 module * Update C3 module * update * update * update * update * update * update * update * update * update * updates * updates * updates * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * updates * updates * updates * updates * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update datasets * update * update * update * update attempt_downlaod() * merge * merge * update * update * update * update * update * update * update * update * update * update * parameterize eps * comments * gs-multiple * update * max_nms implemented * Create one_cycle() function * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * GitHub API rate limit fix * update * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * ComputeLoss * astuple * epochs * update * update * ComputeLoss() * update * update * update * update * update * update * update * update * update * update * update * merge * merge * merge * merge * update * update * update * update * commit=tag == tags[-1] * Update cudnn.benchmark * update * update * update * updates * updates * updates * updates * updates * updates * updates * update * update * update * update * update * mosaic9 * update * update * update * update * update * update * institute cache versioning * only display on existing cache * reverse cache exists booleans * Created using Colaboratory * YOLOv5 PyTorch Hub results.save() method retains filenames (#2194) * save results with name * debug * save original imgs names * Update common.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * TTA augument boxes one pixel shifted in de-flip ud and lr (#2219) * TTA augument boxes one pixel shifted in de-flip ud and lr * PEP8 reformat Co-authored-by: Jaap van de Loosdrecht <jaap.van.de.loosdrecht@nhlstenden.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * LoadStreams() frame loss bug fix (#2222) * Update yolo.py channel array (#2223) * Add check_imshow() (#2231) * Add check_imshow() * Update general.py * Update general.py * Update CI badge (#2230) * Add isdocker() (#2232) * Add isdocker() * Update general.py * Update general.py * YOLOv5 Hub URL inference bug fix (#2250) * Update common.py * Update common.py * Update common.py * Improved hubconf.py CI tests (#2251) * Unified hub and detect.py box and labels plotting (#2243) * reset head * Update inference default to multi_label=False (#2252) * Update inference default to multi_label=False * bug fix * Update plots.py * Update plots.py * Robust objectness loss balancing (#2256) * Created using Colaboratory * Update minimum stride to 32 (#2266) * Dynamic ONNX engine generation (#2208) * add: dynamic onnx export * delete: test onnx inference * fix dynamic output axis * Code reduction * fix: dynamic output axes, dynamic input naming * Remove fixed axes Co-authored-by: Shivam Swanrkar <ss8464@nyu.edu> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update greetings.yml for auto-rebase on PR (#2272) * Update Dockerfile with apt install zip (#2274) * FLOPS min stride 32 (#2276) Signed-off-by: xiaowo1996 <429740343@qq.com> * Update README.md * Amazon AWS EC2 startup and re-startup scripts (#2185) * Amazon AWS EC2 startup and re-startup scripts * Create resume.py * cleanup * Amazon AWS EC2 startup and re-startup scripts (#2282) * Update train.py (#2290) * Update train.py * Update train.py * Update train.py * Update train.py * Create train.py * Improved model+EMA checkpointing (#2292) * Enhanced model+EMA checkpointing * update * bug fix * bug fix 2 * always save optimizer * ema half * remove model.float() * model half * carry ema/model in fp32 * rm model.float() * both to float always * cleanup * cleanup * Improved model+EMA checkpointing 2 (#2295) * Fix labels being missed when image extension appears twice in filename (#2300) * W&B entity support (#2298) * W&B entity support * shorten wandb_entity to entity Co-authored-by: Jan Hajek <jan.hajek@gmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Avoid mutable state in Detect * Update yolo and remove .to(device) Co-authored-by: Oleg Boiko <oboiko@chegg.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: train255 <thanhdd.it@gmail.com> Co-authored-by: ab-101 <56578530+ab-101@users.noreply.github.com> Co-authored-by: Transigent <wbdsmith@optusnet.com.au> Co-authored-by: NanoCode012 <kevinvong@rocketmail.com> Co-authored-by: Daniel Khromov <danielkhromov@gmail.com> Co-authored-by: VdLMV <jaap@vdlmv.nl> Co-authored-by: Jaap van de Loosdrecht <jaap.van.de.loosdrecht@nhlstenden.com> Co-authored-by: Yann Defretin <kinoute@gmail.com> Co-authored-by: Aditya Lohia <64709773+aditya-dl@users.noreply.github.com> Co-authored-by: Shivam Swanrkar <ss8464@nyu.edu> Co-authored-by: xiaowo1996 <429740343@qq.com> Co-authored-by: Iden Craven <iden.craven@gmail.com> Co-authored-by: Jan Hajek <toretak@users.noreply.github.com> Co-authored-by: Jan Hajek <jan.hajek@gmail.com>
2021-02-27 07:07:40 +08:00
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
2020-05-30 08:04:54 +08:00
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
class Model(nn.Module):
2021-03-03 15:08:21 +08:00
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
2020-05-30 08:04:54 +08:00
super(Model, self).__init__()
2020-07-14 05:35:47 +08:00
if isinstance(cfg, dict):
self.yaml = cfg # model dict
2020-06-10 05:31:04 +08:00
else: # is *.yaml
2020-07-06 04:41:21 +08:00
import yaml # for torch hub
2020-07-14 05:35:47 +08:00
self.yaml_file = Path(cfg).name
with open(cfg) as f:
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
2020-05-30 08:04:54 +08:00
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
2020-07-14 05:35:47 +08:00
if nc and nc != self.yaml['nc']:
2021-03-03 15:08:21 +08:00
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
2020-07-14 05:35:47 +08:00
self.yaml['nc'] = nc # override yaml value
2021-03-03 15:08:21 +08:00
if anchors:
logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
self.yaml['anchors'] = round(anchors) # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
2020-12-06 19:41:37 +08:00
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
2020-06-11 10:11:11 +08:00
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
2020-05-30 08:04:54 +08:00
# Build strides, anchors
m = self.model[-1] # Detect()
2020-07-05 14:07:26 +08:00
if isinstance(m, Detect):
s = 256 # 2x min stride
2020-07-05 14:07:26 +08:00
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
self.stride = m.stride
self._initialize_biases() # only run once
# print('Strides: %s' % m.stride.tolist())
2020-05-30 08:04:54 +08:00
# Init weights, biases
initialize_weights(self)
2020-07-14 06:21:19 +08:00
self.info()
logger.info('')
2020-05-30 08:04:54 +08:00
def forward(self, x, augment=False, profile=False):
2020-06-06 11:36:29 +08:00
if augment:
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
2021-01-27 09:30:42 +08:00
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi[..., :4] /= si # de-scale
2020-07-29 06:38:56 +08:00
if fi == 2:
2021-03-01 13:14:08 +08:00
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
2020-07-29 06:38:56 +08:00
elif fi == 3:
2021-03-01 13:14:08 +08:00
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
y.append(yi)
2020-06-06 11:36:29 +08:00
return torch.cat(y, 1), None # augmented inference, train
else:
return self.forward_once(x, profile) # single-scale inference, train
def forward_once(self, x, profile=False):
2020-06-06 11:22:17 +08:00
y, dt = [], [] # outputs
2020-05-30 08:04:54 +08:00
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
t = time_synchronized()
2020-05-30 08:04:54 +08:00
for _ in range(10):
_ = m(x)
dt.append((time_synchronized() - t) * 100)
2020-06-06 11:22:17 +08:00
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
2020-05-30 08:04:54 +08:00
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if profile:
2020-06-06 11:22:17 +08:00
print('%.1fms total' % sum(dt))
2020-05-30 08:04:54 +08:00
return x
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
2020-10-16 02:10:08 +08:00
# https://arxiv.org/abs/1708.02002 section 3.3
2020-05-30 08:04:54 +08:00
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
m = self.model[-1] # Detect() module
2020-08-03 05:23:05 +08:00
for mi, s in zip(m.m, m.stride): # from
2020-05-30 08:04:54 +08:00
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
2020-12-23 09:27:40 +08:00
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
2020-05-30 08:04:54 +08:00
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def _print_biases(self):
m = self.model[-1] # Detect() module
2020-08-03 05:23:05 +08:00
for mi in m.m: # from
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
2020-05-30 08:04:54 +08:00
2020-06-10 01:51:47 +08:00
# def _print_weights(self):
# for m in self.model.modules():
# if type(m) is Bottleneck:
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
2020-06-08 04:42:33 +08:00
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
print('Fusing layers... ')
2020-06-08 04:42:33 +08:00
for m in self.model.modules():
2020-10-11 06:42:54 +08:00
if type(m) is Conv and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
2020-08-25 10:27:54 +08:00
delattr(m, 'bn') # remove batchnorm
2020-06-08 04:42:33 +08:00
m.forward = m.fuseforward # update forward
2020-07-14 05:35:47 +08:00
self.info()
2020-07-06 14:16:50 +08:00
return self
2020-05-30 08:04:54 +08:00
2020-10-16 02:10:08 +08:00
def nms(self, mode=True): # add or remove NMS module
present = type(self.model[-1]) is NMS # last layer is NMS
if mode and not present:
print('Adding NMS... ')
2020-09-21 07:31:40 +08:00
m = NMS() # module
m.f = -1 # from
m.i = self.model[-1].i + 1 # index
self.model.add_module(name='%s' % m.i, module=m) # add
2020-10-16 02:10:08 +08:00
self.eval()
elif not mode and present:
print('Removing NMS... ')
self.model = self.model[:-1] # remove
2020-09-21 07:31:40 +08:00
return self
2020-10-16 02:10:08 +08:00
def autoshape(self): # add autoShape module
print('Adding autoShape... ')
m = autoShape(self) # wrap model
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
return m
def info(self, verbose=False, img_size=640): # print model information
model_info(self, verbose, img_size)
2020-07-14 05:35:47 +08:00
def parse_model(d, ch): # model_dict, input_channels(3)
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
2020-07-14 05:35:47 +08:00
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
2020-05-30 08:04:54 +08:00
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
2020-07-14 05:35:47 +08:00
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
2020-05-30 08:04:54 +08:00
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
2021-01-30 03:25:01 +08:00
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
C3]:
2020-05-30 08:04:54 +08:00
c1, c2 = ch[f], args[0]
2021-02-16 13:21:53 +08:00
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
2020-05-30 08:04:54 +08:00
args = [c1, c2, *args[1:]]
2020-07-05 14:07:26 +08:00
if m in [BottleneckCSP, C3]:
2021-02-16 13:21:53 +08:00
args.insert(2, n) # number of repeats
2020-05-30 08:04:54 +08:00
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
2021-02-16 13:21:53 +08:00
c2 = sum([ch[x] for x in f])
2020-05-30 08:04:54 +08:00
elif m is Detect:
2021-02-16 13:21:53 +08:00
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Contract:
2021-02-16 13:21:53 +08:00
c2 = ch[f] * args[0] ** 2
elif m is Expand:
2021-02-16 13:21:53 +08:00
c2 = ch[f] // args[0] ** 2
2020-05-30 08:04:54 +08:00
else:
2021-02-16 13:21:53 +08:00
c2 = ch[f]
2020-05-30 08:04:54 +08:00
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum([x.numel() for x in m_.parameters()]) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
2020-05-30 08:04:54 +08:00
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
2021-02-16 13:21:53 +08:00
if i == 0:
ch = []
2020-05-30 08:04:54 +08:00
ch.append(c2)
2020-06-11 10:11:11 +08:00
return nn.Sequential(*layers), sorted(save)
2020-05-30 08:04:54 +08:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2020-06-25 09:00:43 +08:00
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
2020-05-30 08:04:54 +08:00
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
2020-06-19 10:33:02 +08:00
opt.cfg = check_file(opt.cfg) # check file
set_logging()
device = select_device(opt.device)
2020-05-30 08:04:54 +08:00
# Create model
model = Model(opt.cfg).to(device)
model.train()
# Profile
2020-06-06 11:22:39 +08:00
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
# y = model(img, profile=True)
2020-05-30 08:04:54 +08:00
# Tensorboard
# from torch.utils.tensorboard import SummaryWriter
# tb_writer = SummaryWriter()
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
# tb_writer.add_graph(model.model, img) # add model to tensorboard
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard