130 lines
5.3 KiB
Python
130 lines
5.3 KiB
Python
|
# YOLOv5 experiment logging utils
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
||
|
from utils.general import colorstr, emojis
|
||
|
from utils.loggers.wandb.wandb_utils import WandbLogger
|
||
|
from utils.torch_utils import de_parallel
|
||
|
|
||
|
LOGGERS = ('txt', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
|
||
|
|
||
|
try:
|
||
|
import wandb
|
||
|
|
||
|
assert hasattr(wandb, '__version__') # verify package import not local dir
|
||
|
except (ImportError, AssertionError):
|
||
|
wandb = None
|
||
|
|
||
|
|
||
|
class Loggers():
|
||
|
# YOLOv5 Loggers class
|
||
|
def __init__(self, save_dir=None, results_file=None, weights=None, opt=None, hyp=None,
|
||
|
data_dict=None, logger=None, include=LOGGERS):
|
||
|
self.save_dir = save_dir
|
||
|
self.results_file = results_file
|
||
|
self.weights = weights
|
||
|
self.opt = opt
|
||
|
self.hyp = hyp
|
||
|
self.data_dict = data_dict
|
||
|
self.logger = logger # for printing results to console
|
||
|
self.include = include
|
||
|
for k in LOGGERS:
|
||
|
setattr(self, k, None) # init empty logger dictionary
|
||
|
|
||
|
def start(self):
|
||
|
self.txt = True # always log to txt
|
||
|
|
||
|
# Message
|
||
|
try:
|
||
|
import wandb
|
||
|
except ImportError:
|
||
|
prefix = colorstr('Weights & Biases: ')
|
||
|
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
|
||
|
print(emojis(s))
|
||
|
|
||
|
# TensorBoard
|
||
|
s = self.save_dir
|
||
|
if 'tb' in self.include and not self.opt.evolve:
|
||
|
prefix = colorstr('TensorBoard: ')
|
||
|
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
||
|
self.tb = SummaryWriter(str(s))
|
||
|
|
||
|
# W&B
|
||
|
try:
|
||
|
assert 'wandb' in self.include and wandb
|
||
|
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume else None
|
||
|
self.opt.hyp = self.hyp # add hyperparameters
|
||
|
self.wandb = WandbLogger(self.opt, s.stem, run_id, self.data_dict)
|
||
|
except:
|
||
|
self.wandb = None
|
||
|
|
||
|
return self
|
||
|
|
||
|
def on_train_batch_end(self, ni, model, imgs):
|
||
|
# Callback runs on train batch end
|
||
|
if ni == 0:
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter('ignore') # suppress jit trace warning
|
||
|
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
|
||
|
if self.wandb and ni == 10:
|
||
|
files = sorted(self.save_dir.glob('train*.jpg'))
|
||
|
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
||
|
|
||
|
def on_train_epoch_end(self, epoch):
|
||
|
# Callback runs on train epoch end
|
||
|
if self.wandb:
|
||
|
self.wandb.current_epoch = epoch + 1
|
||
|
|
||
|
def on_val_batch_end(self, pred, predn, path, names, im):
|
||
|
# Callback runs on train batch end
|
||
|
if self.wandb:
|
||
|
self.wandb.val_one_image(pred, predn, path, names, im)
|
||
|
|
||
|
def on_val_end(self):
|
||
|
# Callback runs on val end
|
||
|
if self.wandb:
|
||
|
files = sorted(self.save_dir.glob('val*.jpg'))
|
||
|
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||
|
|
||
|
def on_train_val_end(self, mloss, results, lr, epoch, s, best_fitness, fi):
|
||
|
# Callback runs on validation end during training
|
||
|
vals = list(mloss[:-1]) + list(results) + lr
|
||
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||
|
if self.txt:
|
||
|
with open(self.results_file, 'a') as f:
|
||
|
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
|
||
|
if self.tb:
|
||
|
for x, tag in zip(vals, tags):
|
||
|
self.tb.add_scalar(tag, x, epoch) # TensorBoard
|
||
|
if self.wandb:
|
||
|
self.wandb.log({k: v for k, v in zip(tags, vals)})
|
||
|
self.wandb.end_epoch(best_result=best_fitness == fi)
|
||
|
|
||
|
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
||
|
# Callback runs on model save event
|
||
|
if self.wandb:
|
||
|
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
||
|
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
||
|
|
||
|
def on_train_end(self, last, best):
|
||
|
# Callback runs on training end
|
||
|
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
||
|
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
||
|
if self.wandb:
|
||
|
wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
||
|
wandb.log_artifact(str(best if best.exists() else last), type='model',
|
||
|
name='run_' + self.wandb.wandb_run.id + '_model',
|
||
|
aliases=['latest', 'best', 'stripped'])
|
||
|
self.wandb.finish_run()
|
||
|
|
||
|
def log_images(self, paths):
|
||
|
# Log images
|
||
|
if self.wandb:
|
||
|
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|