yolov5/utils/plots.py

495 lines
20 KiB
Python
Raw Normal View History

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Plotting utils."""
import contextlib
import math
import os
from copy import copy
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
2020-12-19 10:05:38 +08:00
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw
from scipy.ndimage.filters import gaussian_filter1d
from ultralytics.utils.plotting import Annotator
from utils import TryExcept, threaded
from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
2020-11-16 23:34:07 +08:00
# Settings
RANK = int(os.getenv("RANK", -1))
matplotlib.rc("font", **{"size": 11})
matplotlib.use("Agg") # for writing to files only
2020-11-16 23:34:07 +08:00
2021-04-28 22:05:14 +08:00
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
2024-02-25 21:04:01 +08:00
"""
Initializes the Colors class with a palette derived from Ultralytics color scheme, converting hex codes to RGB.
Colors derived from `hex = matplotlib.colors.TABLEAU_COLORS.values()`.
"""
hexs = (
"FF3838",
"FF9D97",
"FF701F",
"FFB21D",
"CFD231",
"48F90A",
"92CC17",
"3DDB86",
"1A9334",
"00D4BB",
"2C99A8",
"00C2FF",
"344593",
"6473FF",
"0018EC",
"8438FF",
"520085",
"CB38FF",
"FF95C8",
"FF37C7",
)
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
2021-04-28 22:05:14 +08:00
self.n = len(self.palette)
def __call__(self, i, bgr=False):
2024-02-25 21:04:01 +08:00
"""Returns color from palette by index `i`, in BGR format if `bgr=True`, else RGB; `i` is an integer index."""
2021-04-28 22:05:14 +08:00
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
2021-04-28 22:05:14 +08:00
colors = Colors() # create instance for 'from utils.plots import colors'
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if ("Detect" not in module_type) and (
"Segment" not in module_type
): # 'Detect' for Object Detect task,'Segment' for Segment task
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis("off")
LOGGER.info(f"Saving {f}... ({n}/{channels})")
plt.savefig(f, dpi=300, bbox_inches="tight")
plt.close()
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
def hist2d(x, y, n=100):
2024-02-25 21:04:01 +08:00
"""
Generates a logarithmic 2D histogram, useful for visualizing label or evolution distributions.
Used in used in labels.png and evolve.png.
"""
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
2024-02-25 21:04:01 +08:00
"""Applies a low-pass Butterworth filter to `data` with specified `cutoff`, `fs`, and `order`."""
from scipy.signal import butter, filtfilt
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype="low", analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
def output_to_target(output, max_det=300):
2024-02-25 21:04:01 +08:00
"""Converts YOLOv5 model output to [batch_id, class_id, x, y, w, h, conf] format for plotting, limiting detections
to `max_det`.
"""
targets = []
for i, o in enumerate(output):
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
return torch.cat(targets, 0).numpy()
@threaded
def plot_images(images, targets, paths=None, fname="images.jpg", names=None):
2024-02-25 21:04:01 +08:00
"""Plots an image grid with labels from YOLOv5 predictions or targets, saving to `fname`."""
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs**0.5) # number of subplots (square)
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y : y + h, x : x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
2021-08-30 00:05:49 +08:00
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(targets) > 0:
ti = targets[targets[:, 0] == i] # image targets
boxes = xywh2xyxy(ti[:, 2:6]).T
classes = ti[:, 1].astype("int")
labels = ti.shape[1] == 6 # labels if no conf column
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
cls = classes[j]
2021-04-28 22:05:14 +08:00
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""):
2024-02-25 21:04:01 +08:00
"""Plots learning rate schedule for given optimizer and scheduler, saving plot to `save_dir`."""
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]["lr"])
plt.plot(y, ".-", label="LR")
plt.xlabel("epoch")
plt.ylabel("LR")
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / "LR.png", dpi=200)
2021-01-05 07:49:08 +08:00
plt.close()
2021-07-14 21:43:54 +08:00
def plot_val_txt(): # from utils.plots import *; plot_val()
# Plot val.txt histograms
x = np.loadtxt("val.txt", dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect("equal")
plt.savefig("hist2d.png", dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig("hist1d.png", dpi=200)
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
# Plot targets.txt histograms
x = np.loadtxt("targets.txt", dtype=np.float32).T
s = ["x targets", "y targets", "width targets", "height targets"]
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}")
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig("targets.jpg", dpi=200)
def plot_val_study(file="", dir="", x=None): # from utils.plots import *; plot_val_study()
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
save_dir = Path(file).parent if file else Path(dir)
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
2021-10-11 16:59:22 +08:00
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
for f in sorted(save_dir.glob("study*.txt")):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
if plot2:
s = ["P", "R", "mAP@.5", "mAP@.5:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"]
for i in range(7):
ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
ax2.plot(
y[5, 1:j],
y[3, 1:j] * 1e2,
".-",
linewidth=2,
markersize=8,
label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"),
)
ax2.plot(
1e3 / np.array([209, 140, 97, 58, 35, 18]),
[34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
"k.-",
linewidth=2,
markersize=8,
alpha=0.25,
label="EfficientDet",
)
2021-02-02 05:51:11 +08:00
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
2021-04-12 01:23:47 +08:00
ax2.set_xlim(0, 57)
2021-10-11 16:59:22 +08:00
ax2.set_ylim(25, 55)
ax2.set_xlabel("GPU Speed (ms/img)")
ax2.set_ylabel("COCO AP val")
ax2.legend(loc="lower right")
f = save_dir / "study.png"
print(f"Saving {f}...")
plt.savefig(f, dpi=300)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(labels, names=(), save_dir=Path("")):
2024-02-25 21:04:01 +08:00
"""Plots dataset labels, saving correlogram and label images, handles classes, and visualizes bounding boxes."""
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
2020-12-19 10:05:38 +08:00
plt.close()
# matplotlib labels
matplotlib.use("svg") # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
2021-05-17 17:44:22 +08:00
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel("instances")
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel("classes")
sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, *box in labels[:1000]:
2021-04-28 22:05:14 +08:00
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis("off")
for a in [0, 1, 2, 3]:
for s in ["top", "right", "left", "bottom"]:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / "labels.jpg", dpi=200)
matplotlib.use("Agg")
plt.close()
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")):
2024-02-25 21:04:01 +08:00
"""Displays a grid of images with optional labels and predictions, saving to a file."""
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
from utils.augmentations import denormalize
names = names or [f"class{i}" for i in range(1000)]
blocks = torch.chunk(
denormalize(im.clone()).cpu().float(), len(im), dim=0
) # select batch index 0, block by channels
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
n = min(len(blocks), nmax) # number of plots
m = min(8, round(n**0.5)) # 8 x 8 default
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
ax = ax.ravel() if m > 1 else [ax]
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
ax[i].axis("off")
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
if labels is not None:
s = names[labels[i]] + (f"{names[pred[i]]}" if pred is not None else "")
ax[i].set_title(s, fontsize=8, verticalalignment="top")
plt.savefig(f, dpi=300, bbox_inches="tight")
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
plt.close()
if verbose:
LOGGER.info(f"Saving {f}")
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
if labels is not None:
LOGGER.info("True: " + " ".join(f"{names[i]:3s}" for i in labels[:nmax]))
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
if pred is not None:
LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax]))
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
return f
def plot_evolve(evolve_csv="path/to/evolve.csv"): # from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
evolve_csv = Path(evolve_csv)
data = pd.read_csv(evolve_csv)
keys = [x.strip() for x in data.columns]
x = data.values
f = fitness(x)
j = np.argmax(f) # max fitness index
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc("font", **{"size": 8})
print(f"Best results from row {j} of {evolve_csv}:")
for i, k in enumerate(keys[7:]):
v = x[:, 7 + i]
mu = v[j] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none")
plt.plot(mu, f.max(), "k+", markersize=15)
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print(f"{k:>15}: {mu:.3g}")
f = evolve_csv.with_suffix(".png") # filename
plt.savefig(f, dpi=200)
plt.close()
print(f"Saved {f}")
def plot_results(file="path/to/results.csv", dir=""):
2024-02-25 21:04:01 +08:00
"""
Plots training results from a 'results.csv' file; accepts file path and directory as arguments.
Example: from utils.plots import *; plot_results('path/to/results.csv')
"""
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype("float")
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.info(f"Warning: Plotting error for {f}: {e}")
ax[1].legend()
fig.savefig(save_dir / "results.png", dpi=200)
plt.close()
def profile_idetection(start=0, stop=0, labels=(), save_dir=""):
2024-02-25 21:04:01 +08:00
"""
Plots per-image iDetection logs, comparing metrics like storage and performance over time.
Example: from utils.plots import *; profile_idetection()
"""
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"]
files = list(Path(save_dir).glob("frames*.txt"))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = results[0] - results[0].min() # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace("frames_", "")
a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel("time (s)")
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ["top", "right"]:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f"Warning: Plotting error for {f}; {e}")
ax[1].legend()
plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200)
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
2024-02-25 21:04:01 +08:00
"""Crops and saves an image from bounding box `xyxy`, applied with `gain` and `pad`, optionally squares and adjusts
for BGR.
"""
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix(".jpg"))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop