yolov5/data/coco.yaml

36 lines
1.7 KiB
YAML
Raw Normal View History

2020-05-30 08:04:54 +08:00
# COCO 2017 dataset http://cocodataset.org
2020-07-13 01:37:06 +08:00
# Train command: python train.py --data coco.yaml
# Default dataset location is next to YOLOv5:
2020-05-30 08:04:54 +08:00
# /parent_folder
# /coco
# /yolov5
# download command/URL (optional)
download: bash data/scripts/get_coco.sh
2020-07-13 01:37:06 +08:00
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
2020-07-16 08:52:27 +08:00
train: ../coco/train2017.txt # 118287 images
val: ../coco/val2017.txt # 5000 images
2020-07-16 09:58:35 +08:00
test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
2020-05-30 08:04:54 +08:00
# number of classes
nc: 80
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
2020-05-30 08:04:54 +08:00
# Print classes
# with open('data/coco.yaml') as f:
# d = yaml.safe_load(f) # dict
2020-05-30 08:04:54 +08:00
# for i, x in enumerate(d['names']):
2020-07-16 09:58:35 +08:00
# print(i, x)