yolov5/utils/datasets.py

934 lines
37 KiB
Python
Raw Normal View History

# Dataset utils and dataloaders
2020-05-30 08:04:54 +08:00
import glob
import logging
2020-11-07 09:18:18 +08:00
import math
2020-05-30 08:04:54 +08:00
import os
import random
import shutil
import time
2020-11-07 09:18:18 +08:00
from itertools import repeat
from multiprocessing.pool import ThreadPool
2020-05-30 08:04:54 +08:00
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
import torch
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.general import xyxy2xywh, xywh2xyxy, clean_str
from utils.torch_utils import torch_distributed_zero_first
2020-05-30 08:04:54 +08:00
# Parameters
2020-05-30 08:04:54 +08:00
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
2020-11-24 23:13:04 +08:00
logger = logging.getLogger(__name__)
2020-05-30 08:04:54 +08:00
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def get_hash(files):
# Returns a single hash value of a list of files
2020-07-10 11:57:24 +08:00
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
2020-05-30 08:04:54 +08:00
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
pass
return s
2020-07-24 13:49:54 +08:00
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
2020-11-26 18:49:01 +08:00
rank=-1, world_size=1, workers=8, image_weights=False):
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
with torch_distributed_zero_first(rank):
[WIP] Feature/ddp fixed (#401) * Squashed commit of the following: commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Squashed commit of the following: commit 94147314e559a6bdd13cb9de62490d385c27596f Merge: 65157e2 37acbdc Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 16 14:00:17 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov4 into feature/DDP_fixed commit 37acbdc0b6ef8c3343560834b914c83bbb0abbd1 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:03:41 2020 -0700 update test.py --save-txt commit b8c2da4a0d6880afd7857207340706666071145b Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 20:00:48 2020 -0700 update test.py --save-txt commit 65157e2fc97d371bc576e18b424e130eb3026917 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:44:13 2020 +0800 Revert the README.md removal commit 1c802bfa503623661d8617ca3f259835d27c5345 Merge: cd55b44 0f3b8bb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:43:38 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit cd55b445c4dcd8003ff4b0b46b64adf7c16e5ce7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 16:42:33 2020 +0800 fix the DDP performance deterioration bug. commit 0f3b8bb1fae5885474ba861bbbd1924fb622ee93 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Wed Jul 15 00:28:53 2020 -0700 Delete README.md commit f5921ba1e35475f24b062456a890238cb7a3cf94 Merge: 85ab2f3 bd3fdbb Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Wed Jul 15 11:20:17 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit bd3fdbbf1b08ef87931eef49fa8340621caa7e87 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:38:20 2020 -0700 Update README.md commit c1a97a7767ccb2aa9afc7a5e72fd159e7c62ec02 Merge: 2bf86b8 f796708 Author: Glenn Jocher <glenn.jocher@ultralytics.com> Date: Tue Jul 14 18:36:53 2020 -0700 Merge branch 'master' into feature/DDP_fixed commit 2bf86b892fa2fd712f6530903a0d9b8533d7447a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 22:18:15 2020 +0700 Fixed world_size not found when called from test commit 85ab2f38cdda28b61ad15a3a5a14c3aafb620dc8 Merge: 5a19011 c8357ad Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:58 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit 5a19011949398d06e744d8d5521ab4e6dfa06ab7 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 22:19:15 2020 +0800 Add assertion for <=2 gpus DDP commit c8357ad5b15a0e6aeef4d7fe67ca9637f7322a4d Merge: e742dd9 787582f Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 22:10:02 2020 +0800 Merge pull request #8 from MagicFrogSJTU/NanoCode012-patch-1 Modify number of dataloaders' workers commit 787582f97251834f955ef05a77072b8c673a8397 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 20:38:58 2020 +0700 Fixed issue with single gpu not having world_size commit 63648925288d63a21174a4dd28f92dbfebfeb75a Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 19:16:15 2020 +0700 Add assert message for clarification Clarify why assertion was thrown to users commit 69364d6050e048d0d8834e0f30ce84da3f6a13f3 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:36:48 2020 +0700 Changed number of workers check commit d738487089e41c22b3b1cd73aa7c1c40320a6ebf Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 17:33:38 2020 +0700 Adding world_size Reduce calls to torch.distributed. For use in create_dataloader. commit e742dd9619d29306c7541821238d3d7cddcdc508 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 15:38:48 2020 +0800 Make SyncBN a choice commit e90d4004387e6103fecad745f8cbc2edc918e906 Merge: 5bf8beb cd90360 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 14 15:32:10 2020 +0800 Merge pull request #6 from NanoCode012/patch-5 Update train.py commit cd9036017e7f8bd519a8b62adab0f47ea67f4962 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 14 13:39:29 2020 +0700 Update train.py Remove redundant `opt.` prefix. commit 5bf8bebe8873afb18b762fe1f409aca116fac073 Merge: c9558a9 a1c8406 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 14:09:51 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit c9558a9b51547febb03d9c1ca42e2ef0fc15bb31 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 14 13:51:34 2020 +0800 Add device allocation for loss compute commit 4f08c692fb5e943a89e0ee354ef6c80a50eeb28d Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:16:27 2020 +0800 Revert drop_last commit 1dabe33a5a223b758cc761fc8741c6224205a34b Merge: a1ce9b1 4b8450b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:49 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit a1ce9b1e96b71d7fcb9d3e8143013eb8cebe5e27 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 9 11:15:21 2020 +0800 fix lr warning commit 4b8450b46db76e5e58cd95df965d4736077cfb0e Merge: b9a50ae 02c63ef Author: yzchen <Chenyzsjtu@gmail.com> Date: Wed Jul 8 21:24:24 2020 +0800 Merge pull request #4 from NanoCode012/patch-4 Add drop_last for multi gpu commit 02c63ef81cf98b28b10344fe2cce08a03b143941 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Wed Jul 8 10:08:30 2020 +0700 Add drop_last for multi gpu commit b9a50aed48ab1536f94d49269977e2accd67748f Merge: ec2dc6c 121d90b Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:48:04 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit ec2dc6cc56de43ddff939e14c450672d0fbf9b3d Merge: d0326e3 82a6182 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:34:31 2020 +0800 Merge branch 'feature/DDP_fixed' of https://github.com/MagicFrogSJTU/yolov5 into feature/DDP_fixed commit d0326e398dfeeeac611ccc64198d4fe91b7aa969 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Tue Jul 7 19:31:24 2020 +0800 Add SyncBN commit 82a6182b3ad0689a4432b631b438004e5acb3b74 Merge: 96fa40a 050b2a5 Author: yzchen <Chenyzsjtu@gmail.com> Date: Tue Jul 7 19:21:01 2020 +0800 Merge pull request #1 from NanoCode012/patch-2 Convert BatchNorm to SyncBatchNorm commit 050b2a5a79a89c9405854d439a1f70f892139b1c Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:38:14 2020 +0700 Add cleanup for process_group commit 2aa330139f3cc1237aeb3132245ed7e5d6da1683 Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 12:07:40 2020 +0700 Remove apex.parallel. Use torch.nn.parallel For future compatibility commit 77c8e27e603bea9a69e7647587ca8d509dc1990d Author: NanoCode012 <kevinvong@rocketmail.com> Date: Tue Jul 7 01:54:39 2020 +0700 Convert BatchNorm to SyncBatchNorm commit 96fa40a3a925e4ffd815fe329e1b5181ec92adc8 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 21:53:56 2020 +0800 Fix the datset inconsistency problem commit 16e7c269d062c8d16c4d4ff70cc80fd87935dc95 Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Mon Jul 6 11:34:03 2020 +0800 Add loss multiplication to preserver the single-process performance commit e83805563065ffd2e38f85abe008fc662cc17909 Merge: 625bb49 3bdea3f Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Fri Jul 3 20:56:30 2020 +0800 Merge branch 'master' of https://github.com/ultralytics/yolov5 into feature/DDP_fixed commit 625bb49f4e52d781143fea0af36d14e5be8b040c Author: yizhi.chen <chenyzsjtu@outlook.com> Date: Thu Jul 2 22:45:15 2020 +0800 DDP established * Fixed destroy_process_group in DP mode * Update torch_utils.py * Update utils.py Revert build_targets() to current master. * Update datasets.py * Fixed world_size attribute not found Co-authored-by: NanoCode012 <kevinvong@rocketmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2020-07-20 03:33:30 +08:00
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
2020-07-24 13:49:54 +08:00
augment=augment, # augment images
hyp=hyp, # augmentation hyperparameters
rect=rect, # rectangular training
cache_images=cache,
single_cls=opt.single_cls,
stride=int(stride),
pad=pad,
2020-11-26 18:49:01 +08:00
rank=rank,
image_weights=image_weights)
2020-06-27 09:56:13 +08:00
batch_size = min(batch_size, len(dataset))
2020-08-13 04:57:36 +08:00
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
2020-09-02 08:02:47 +08:00
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
2020-11-26 20:25:51 +08:00
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
dataloader = loader(dataset,
batch_size=batch_size,
num_workers=nw,
sampler=sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabels.collate_fn)
2020-06-27 09:56:13 +08:00
return dataloader, dataset
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
""" Dataloader that reuses workers
Uses same syntax as vanilla DataLoader
2020-09-02 08:02:47 +08:00
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
return len(self.batch_sampler.sampler)
def __iter__(self):
for i in range(len(self)):
yield next(self.iterator)
class _RepeatSampler(object):
""" Sampler that repeats forever
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)
2020-05-30 08:04:54 +08:00
class LoadImages: # for inference
2020-06-28 04:02:01 +08:00
def __init__(self, path, img_size=640):
p = str(Path(path)) # os-agnostic
p = os.path.abspath(p) # absolute path
if '*' in p:
files = sorted(glob.glob(p, recursive=True)) # glob
elif os.path.isdir(p):
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
elif os.path.isfile(p):
files = [p] # files
else:
raise Exception('ERROR: %s does not exist' % p)
2020-05-30 08:04:54 +08:00
images = [x for x in files if x.split('.')[-1].lower() in img_formats]
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
ni, nv = len(images), len(videos)
2020-05-30 08:04:54 +08:00
self.img_size = img_size
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
2020-05-30 08:04:54 +08:00
if any(videos):
self.new_video(videos[0]) # new video
else:
self.cap = None
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
(p, img_formats, vid_formats)
2020-05-30 08:04:54 +08:00
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == self.nf:
2020-05-30 08:04:54 +08:00
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
2020-05-30 08:04:54 +08:00
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()
self.frame += 1
2020-11-24 23:13:04 +08:00
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
2020-05-30 08:04:54 +08:00
else:
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
assert img0 is not None, 'Image Not Found ' + path
2020-11-24 23:13:04 +08:00
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
2020-05-30 08:04:54 +08:00
# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return path, img, img0, self.cap
def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
def __len__(self):
return self.nf # number of files
2020-05-30 08:04:54 +08:00
class LoadWebcam: # for inference
def __init__(self, pipe='0', img_size=640):
2020-05-30 08:04:54 +08:00
self.img_size = img_size
if pipe.isnumeric():
pipe = eval(pipe) # local camera
2020-05-30 08:04:54 +08:00
# pipe = 'rtsp://192.168.1.64/1' # IP camera
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
self.pipe = pipe
self.cap = cv2.VideoCapture(pipe) # video capture object
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == ord('q'): # q to quit
self.cap.release()
cv2.destroyAllWindows()
raise StopIteration
# Read frame
if self.pipe == 0: # local camera
ret_val, img0 = self.cap.read()
img0 = cv2.flip(img0, 1) # flip left-right
else: # IP camera
n = 0
while True:
n += 1
self.cap.grab()
if n % 30 == 0: # skip frames
ret_val, img0 = self.cap.retrieve()
if ret_val:
break
# Print
assert ret_val, 'Camera Error %s' % self.pipe
img_path = 'webcam.jpg'
2020-11-24 23:13:04 +08:00
print('webcam %g: ' % self.count, end='')
2020-05-30 08:04:54 +08:00
# Padded resize
img = letterbox(img0, new_shape=self.img_size)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return img_path, img, img0, None
def __len__(self):
return 0
class LoadStreams: # multiple IP or RTSP cameras
2020-06-28 04:02:01 +08:00
def __init__(self, sources='streams.txt', img_size=640):
self.mode = 'stream'
2020-05-30 08:04:54 +08:00
self.img_size = img_size
if os.path.isfile(sources):
with open(sources, 'r') as f:
2020-11-29 18:58:14 +08:00
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
2020-05-30 08:04:54 +08:00
else:
sources = [sources]
n = len(sources)
self.imgs = [None] * n
self.sources = [clean_str(x) for x in sources] # clean source names for later
2020-05-30 08:04:54 +08:00
for i, s in enumerate(sources):
# Start the thread to read frames from the video stream
2020-11-24 23:13:04 +08:00
print('%g/%g: %s... ' % (i + 1, n, s), end='')
cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
2020-05-30 08:04:54 +08:00
assert cap.isOpened(), 'Failed to open %s' % s
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) % 100
_, self.imgs[i] = cap.read() # guarantee first frame
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
2020-11-24 23:13:04 +08:00
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
2020-05-30 08:04:54 +08:00
thread.start()
2020-11-24 23:13:04 +08:00
print('') # newline
2020-05-30 08:04:54 +08:00
# check for common shapes
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
if not self.rect:
2020-11-24 23:13:04 +08:00
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
2020-05-30 08:04:54 +08:00
def update(self, index, cap):
# Read next stream frame in a daemon thread
n = 0
while cap.isOpened():
n += 1
# _, self.imgs[index] = cap.read()
cap.grab()
if n == 4: # read every 4th frame
_, self.imgs[index] = cap.retrieve()
n = 0
time.sleep(0.01) # wait time
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Convert
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
img = np.ascontiguousarray(img)
return self.sources, img, img0, None
def __len__(self):
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
2020-11-24 23:13:04 +08:00
def img2label_paths(img_paths):
# Define label paths as a function of image paths
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
2020-05-30 08:04:54 +08:00
class LoadImagesAndLabels(Dataset): # for training/testing
2020-06-28 04:02:01 +08:00
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
self.mosaic_border = [-img_size // 2, -img_size // 2]
self.stride = stride
2020-05-30 08:04:54 +08:00
try:
f = [] # image files
2020-07-10 04:45:55 +08:00
for p in path if isinstance(path, list) else [path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
elif p.is_file(): # file
2020-07-10 04:45:55 +08:00
with open(p, 'r') as t:
2020-11-29 18:58:14 +08:00
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
2020-07-10 04:45:55 +08:00
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
2020-07-09 17:52:12 +08:00
else:
2020-07-10 04:45:55 +08:00
raise Exception('%s does not exist' % p)
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
assert self.img_files, 'No images found'
2020-07-10 07:28:20 +08:00
except Exception as e:
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
2020-05-30 08:04:54 +08:00
# Check cache
self.label_files = img2label_paths(self.img_files) # labels
2020-11-24 23:13:04 +08:00
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
if cache_path.is_file():
cache = torch.load(cache_path) # load
2020-11-24 23:25:21 +08:00
if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
cache = self.cache_labels(cache_path) # re-cache
else:
cache = self.cache_labels(cache_path) # cache
2020-11-24 23:13:04 +08:00
# Display cache
[nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
tqdm(None, desc=desc, total=n, initial=n)
assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
# Read cache
cache.pop('hash') # remove hash
labels, shapes = zip(*cache.values())
self.labels = list(labels)
self.shapes = np.array(shapes, dtype=np.float64)
self.img_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
2020-11-24 23:13:04 +08:00
if single_cls:
for x in self.labels:
x[:, 0] = 0
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
self.batch = bi # batch index of image
self.n = n
2020-11-26 18:49:01 +08:00
self.indices = range(n)
# Rectangular Training
2020-05-30 08:04:54 +08:00
if self.rect:
# Sort by aspect ratio
s = self.shapes # wh
2020-05-30 08:04:54 +08:00
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
2020-07-10 11:39:11 +08:00
self.labels = [self.labels[i] for i in irect]
2020-05-30 08:04:54 +08:00
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
2020-06-25 04:02:27 +08:00
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
2020-05-30 08:04:54 +08:00
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
self.imgs = [None] * n
if cache_images:
2020-05-30 08:04:54 +08:00
gb = 0 # Gigabytes of cached images
self.img_hw0, self.img_hw = [None] * n, [None] * n
2020-11-07 09:27:31 +08:00
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
2020-11-07 09:18:18 +08:00
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
2020-05-30 08:04:54 +08:00
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
2020-11-24 23:13:04 +08:00
def cache_labels(self, path=Path('./labels.cache')):
# Cache dataset labels, check images and read shapes
x = {} # dict
2020-11-24 23:13:04 +08:00
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
2020-11-24 23:13:04 +08:00
for i, (im_file, lb_file) in enumerate(pbar):
try:
2020-11-24 23:13:04 +08:00
# verify images
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
2020-11-24 23:13:04 +08:00
# verify labels
if os.path.isfile(lb_file):
nf += 1 # label found
with open(lb_file, 'r') as f:
2020-11-29 18:59:52 +08:00
l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
2020-11-24 23:13:04 +08:00
if len(l):
assert l.shape[1] == 5, 'labels require 5 columns each'
assert (l >= 0).all(), 'negative labels'
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
else:
ne += 1 # label empty
l = np.zeros((0, 5), dtype=np.float32)
else:
nm += 1 # label missing
l = np.zeros((0, 5), dtype=np.float32)
2020-11-24 23:13:04 +08:00
x[im_file] = [l, shape]
except Exception as e:
2020-11-24 23:13:04 +08:00
nc += 1
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
if nf == 0:
print(f'WARNING: No labels found in {path}. See {help_url}')
x['hash'] = get_hash(self.label_files + self.img_files)
x['results'] = [nf, nm, ne, nc, i + 1]
torch.save(x, path) # save for next time
2020-11-24 23:23:00 +08:00
logging.info(f"New cache created: {path}")
return x
2020-05-30 08:04:54 +08:00
def __len__(self):
return len(self.img_files)
# def __iter__(self):
# self.count = -1
2020-11-24 23:13:04 +08:00
# print('ran dataset iter')
2020-05-30 08:04:54 +08:00
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
2020-11-26 18:49:01 +08:00
index = self.indices[index] # linear, shuffled, or image_weights
2020-05-30 08:04:54 +08:00
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp['mosaic']
if mosaic:
2020-05-30 08:04:54 +08:00
# Load mosaic
img, labels = load_mosaic(self, index)
shapes = None
# MixUp https://arxiv.org/pdf/1710.09412.pdf
if random.random() < hyp['mixup']:
2020-11-26 18:49:01 +08:00
img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
img = (img * r + img2 * (1 - r)).astype(np.uint8)
labels = np.concatenate((labels, labels2), 0)
2020-05-30 08:04:54 +08:00
else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
if self.augment:
# Augment imagespace
if not mosaic:
img, labels = random_perspective(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'],
perspective=hyp['perspective'])
2020-05-30 08:04:54 +08:00
# Augment colorspace
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
# Apply cutouts
# if random.random() < 0.9:
# labels = cutout(img, labels)
nL = len(labels) # number of labels
if nL:
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
2020-05-30 08:04:54 +08:00
if self.augment:
# flip up-down
if random.random() < hyp['flipud']:
2020-05-30 08:04:54 +08:00
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]
# flip left-right
if random.random() < hyp['fliplr']:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]
2020-05-30 08:04:54 +08:00
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
2020-07-24 13:49:54 +08:00
# Ancillary functions --------------------------------------------------------------------------------------------------
2020-05-30 08:04:54 +08:00
def load_image(self, index):
# loads 1 image from dataset, returns img, original hw, resized hw
img = self.imgs[index]
if img is None: # not cached
path = self.img_files[index]
img = cv2.imread(path) # BGR
assert img is not None, 'Image Not Found ' + path
h0, w0 = img.shape[:2] # orig hw
r = self.img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
else:
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# Histogram equalization
# if random.random() < 0.2:
# for i in range(3):
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
def load_mosaic(self, index):
# loads images in a mosaic
labels4 = []
s = self.img_size
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
2020-11-26 18:49:01 +08:00
indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
2020-05-30 08:04:54 +08:00
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
2020-05-30 08:04:54 +08:00
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
labels4.append(labels)
# Concat/clip labels
if len(labels4):
labels4 = np.concatenate(labels4, 0)
2020-09-02 08:02:47 +08:00
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
# img4, labels4 = replicate(img4, labels4) # replicate
2020-06-30 08:10:33 +08:00
2020-05-30 08:04:54 +08:00
# Augment
img4, labels4 = random_perspective(img4, labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
perspective=self.hyp['perspective'],
border=self.mosaic_border) # border to remove
2020-05-30 08:04:54 +08:00
return img4, labels4
2020-06-30 08:10:33 +08:00
def replicate(img, labels):
# Replicate labels
h, w = img.shape[:2]
boxes = labels[:, 1:].astype(int)
x1, y1, x2, y2 = boxes.T
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
x1b, y1b, x2b, y2b = boxes[i]
bh, bw = y2b - y1b, x2b - x1b
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
return img, labels
2020-06-28 04:02:01 +08:00
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
2020-05-30 08:04:54 +08:00
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
2020-05-30 08:04:54 +08:00
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
2020-05-30 08:04:54 +08:00
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
2020-05-30 08:04:54 +08:00
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
2020-06-28 04:02:01 +08:00
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
width = img.shape[1] + border[1] * 2
2020-05-30 08:04:54 +08:00
# Center
C = np.eye(3)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3)
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
2020-05-30 08:04:54 +08:00
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
2020-05-30 08:04:54 +08:00
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
2020-05-30 08:04:54 +08:00
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
2020-06-28 04:02:01 +08:00
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
else: # affine
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(img[:, :, ::-1]) # base
# ax[1].imshow(img2[:, :, ::-1]) # warped
2020-05-30 08:04:54 +08:00
# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
else: # affine
xy = xy[:, :2].reshape(n, 8)
2020-05-30 08:04:54 +08:00
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
2020-07-24 13:49:54 +08:00
# clip boxes
2020-05-30 08:04:54 +08:00
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
2020-07-24 13:49:54 +08:00
# filter candidates
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
2020-05-30 08:04:54 +08:00
targets = targets[i]
targets[:, 1:5] = xy[i]
return img, targets
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
2020-07-24 13:49:54 +08:00
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
2020-05-30 08:04:54 +08:00
def cutout(image, labels):
2020-07-24 13:49:54 +08:00
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
2020-05-30 08:04:54 +08:00
h, w = image.shape[:2]
def bbox_ioa(box1, box2):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2 = box2.transpose()
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
# Intersection over box2 area
return inter_area / box2_area
# create random masks
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s))
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return labels
2020-07-24 13:49:54 +08:00
def create_folder(path='./new'):
2020-05-30 08:04:54 +08:00
# Create folder
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder
def flatten_recursive(path='../coco128'):
# Flatten a recursive directory by bringing all files to top level
new_path = Path(path + '_flat')
create_folder(new_path)
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
shutil.copyfile(file, new_path / Path(file).name)
2020-11-24 00:18:21 +08:00
2020-11-24 23:13:04 +08:00
def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
# Convert detection dataset into classification dataset, with one directory per class
path = Path(path) # images dir
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
files = list(path.rglob('*.*'))
n = len(files) # number of files
for im_file in tqdm(files, total=n):
if im_file.suffix[1:] in img_formats:
# image
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
h, w = im.shape[:2]
# labels
lb_file = Path(img2label_paths([str(im_file)])[0])
if Path(lb_file).exists():
with open(lb_file, 'r') as f:
2020-11-29 18:59:52 +08:00
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
2020-11-24 23:13:04 +08:00
for j, x in enumerate(lb):
c = int(x[0]) # class
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
if not f.parent.is_dir():
f.parent.mkdir(parents=True)
b = x[1:] * [w, h, w, h] # box
# b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.2 + 3 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
2020-11-24 01:35:25 +08:00
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
2020-11-24 00:18:21 +08:00
# Arguments
path: Path to images directory
weights: Train, val, test weights (list)
"""
path = Path(path) # images dir
files = list(path.rglob('*.*'))
2020-11-24 01:35:25 +08:00
n = len(files) # number of files
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
2020-11-24 00:18:21 +08:00
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
2020-11-24 01:35:25 +08:00
for i, img in tqdm(zip(indices, files), total=n):
2020-11-24 00:18:21 +08:00
if img.suffix[1:] in img_formats:
with open(path / txt[i], 'a') as f:
f.write(str(img) + '\n') # add image to txt file