39 lines
1.0 KiB
Python
39 lines
1.0 KiB
Python
|
"""
|
||
|
Run a rest API exposing the yolov5s object detection model
|
||
|
"""
|
||
|
import argparse
|
||
|
import io
|
||
|
|
||
|
import torch
|
||
|
from PIL import Image
|
||
|
from flask import Flask, request
|
||
|
|
||
|
app = Flask(__name__)
|
||
|
|
||
|
DETECTION_URL = "/v1/object-detection/yolov5s"
|
||
|
|
||
|
|
||
|
@app.route(DETECTION_URL, methods=["POST"])
|
||
|
def predict():
|
||
|
if not request.method == "POST":
|
||
|
return
|
||
|
|
||
|
if request.files.get("image"):
|
||
|
image_file = request.files["image"]
|
||
|
image_bytes = image_file.read()
|
||
|
|
||
|
img = Image.open(io.BytesIO(image_bytes))
|
||
|
|
||
|
results = model(img, size=640)
|
||
|
data = results.pandas().xyxy[0].to_json(orient="records")
|
||
|
return data
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Flask api exposing yolov5 model")
|
||
|
parser.add_argument("--port", default=5000, type=int, help="port number")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True).autoshape() # force_reload to recache
|
||
|
app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat
|