yolov5/models/experimental.py

103 lines
3.9 KiB
Python
Raw Normal View History

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Experimental modules
"""
import math
import numpy as np
import torch
import torch.nn as nn
from models.common import Conv
from utils.downloads import attempt_download
2020-05-30 08:04:54 +08:00
class Sum(nn.Module):
2020-06-11 10:11:11 +08:00
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
2020-05-30 08:04:54 +08:00
def __init__(self, n, weight=False): # n: number of inputs
super().__init__()
2020-05-30 08:04:54 +08:00
self.weight = weight # apply weights boolean
self.iter = range(n - 1) # iter object
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
2020-05-30 08:04:54 +08:00
def forward(self, x):
y = x[0] # no weight
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
2020-06-11 10:11:11 +08:00
class MixConv2d(nn.Module):
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
super().__init__()
n = len(k) # number of convolutions
2020-06-11 10:11:11 +08:00
if equal_ch: # equal c_ per group
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
2020-06-11 10:11:11 +08:00
else: # equal weight.numel() per group
b = [c2] + [0] * n
a = np.eye(n + 1, n, k=-1)
2020-06-11 10:11:11 +08:00
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-03-31 22:52:34 +08:00
self.m = nn.ModuleList([
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
2020-06-11 10:11:11 +08:00
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
2020-06-11 10:11:11 +08:00
def forward(self, x):
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super().__init__()
def forward(self, x, augment=False, profile=False, visualize=False):
2022-05-16 01:44:16 +08:00
y = [module(x, augment, profile, visualize)[0] for module in self]
2020-07-09 05:23:34 +08:00
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 1) # nms ensemble
2020-07-09 05:23:34 +08:00
return y, None # inference, train output
2020-07-08 06:40:50 +08:00
def attempt_load(weights, device=None, inplace=True, fuse=True):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
from models.yolo import Detect, Model
2020-07-08 06:40:50 +08:00
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2021-08-17 19:18:16 +08:00
# Compatibility updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
m.inplace = inplace # torch 1.7.0 compatibility
2022-05-16 01:44:16 +08:00
if t is Detect and not isinstance(m.anchor_grid, list):
delattr(m, 'anchor_grid')
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
2020-07-08 06:40:50 +08:00
if len(model) == 1:
return model[-1] # return model
2022-05-16 01:44:16 +08:00
print(f'Ensemble created with {weights}\n')
for k in 'names', 'nc', 'yaml':
setattr(model, k, getattr(model[0], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
return model # return ensemble