111 lines
4.1 KiB
Python
111 lines
4.1 KiB
Python
|
# Model validation metrics
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def fitness(x):
|
||
|
# Model fitness as a weighted combination of metrics
|
||
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||
|
return (x[:, :4] * w).sum(1)
|
||
|
|
||
|
|
||
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, fname='precision-recall_curve.png'):
|
||
|
""" Compute the average precision, given the recall and precision curves.
|
||
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||
|
# Arguments
|
||
|
tp: True positives (nparray, nx1 or nx10).
|
||
|
conf: Objectness value from 0-1 (nparray).
|
||
|
pred_cls: Predicted object classes (nparray).
|
||
|
target_cls: True object classes (nparray).
|
||
|
plot: Plot precision-recall curve at mAP@0.5
|
||
|
fname: Plot filename
|
||
|
# Returns
|
||
|
The average precision as computed in py-faster-rcnn.
|
||
|
"""
|
||
|
|
||
|
# Sort by objectness
|
||
|
i = np.argsort(-conf)
|
||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||
|
|
||
|
# Find unique classes
|
||
|
unique_classes = np.unique(target_cls)
|
||
|
|
||
|
# Create Precision-Recall curve and compute AP for each class
|
||
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||
|
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||
|
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||
|
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||
|
for ci, c in enumerate(unique_classes):
|
||
|
i = pred_cls == c
|
||
|
n_l = (target_cls == c).sum() # number of labels
|
||
|
n_p = i.sum() # number of predictions
|
||
|
|
||
|
if n_p == 0 or n_l == 0:
|
||
|
continue
|
||
|
else:
|
||
|
# Accumulate FPs and TPs
|
||
|
fpc = (1 - tp[i]).cumsum(0)
|
||
|
tpc = tp[i].cumsum(0)
|
||
|
|
||
|
# Recall
|
||
|
recall = tpc / (n_l + 1e-16) # recall curve
|
||
|
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||
|
|
||
|
# Precision
|
||
|
precision = tpc / (tpc + fpc) # precision curve
|
||
|
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||
|
|
||
|
# AP from recall-precision curve
|
||
|
for j in range(tp.shape[1]):
|
||
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||
|
if j == 0:
|
||
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||
|
|
||
|
# Compute F1 score (harmonic mean of precision and recall)
|
||
|
f1 = 2 * p * r / (p + r + 1e-16)
|
||
|
|
||
|
if plot:
|
||
|
py = np.stack(py, axis=1)
|
||
|
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
|
||
|
ax.plot(px, py, linewidth=0.5, color='grey') # plot(recall, precision)
|
||
|
ax.plot(px, py.mean(1), linewidth=2, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||
|
ax.set_xlabel('Recall')
|
||
|
ax.set_ylabel('Precision')
|
||
|
ax.set_xlim(0, 1)
|
||
|
ax.set_ylim(0, 1)
|
||
|
plt.legend()
|
||
|
fig.tight_layout()
|
||
|
fig.savefig(fname, dpi=200)
|
||
|
|
||
|
return p, r, ap, f1, unique_classes.astype('int32')
|
||
|
|
||
|
|
||
|
def compute_ap(recall, precision):
|
||
|
""" Compute the average precision, given the recall and precision curves.
|
||
|
Source: https://github.com/rbgirshick/py-faster-rcnn.
|
||
|
# Arguments
|
||
|
recall: The recall curve (list).
|
||
|
precision: The precision curve (list).
|
||
|
# Returns
|
||
|
The average precision as computed in py-faster-rcnn.
|
||
|
"""
|
||
|
|
||
|
# Append sentinel values to beginning and end
|
||
|
mrec = recall # np.concatenate(([0.], recall, [recall[-1] + 1E-3]))
|
||
|
mpre = precision # np.concatenate(([0.], precision, [0.]))
|
||
|
|
||
|
# Compute the precision envelope
|
||
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||
|
|
||
|
# Integrate area under curve
|
||
|
method = 'interp' # methods: 'continuous', 'interp'
|
||
|
if method == 'interp':
|
||
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||
|
else: # 'continuous'
|
||
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||
|
|
||
|
return ap, mpre, mrec
|