yolov5/models/common.py

266 lines
11 KiB
Python
Raw Normal View History

2020-05-30 08:04:54 +08:00
# This file contains modules common to various models
2020-10-16 02:10:08 +08:00
import math
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw
2020-10-16 02:10:08 +08:00
from utils.datasets import letterbox
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
from utils.plots import color_list
2020-05-30 08:04:54 +08:00
2020-07-02 10:15:59 +08:00
def autopad(k, p=None): # kernel, padding
2020-07-02 02:44:49 +08:00
# Pad to 'same'
2020-07-02 10:15:59 +08:00
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
2020-07-02 02:44:49 +08:00
2020-06-09 13:13:01 +08:00
def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
2020-05-30 08:04:54 +08:00
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
2020-06-09 13:13:01 +08:00
class Conv(nn.Module):
# Standard convolution
2020-07-02 02:44:49 +08:00
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
2020-05-30 08:04:54 +08:00
super(Conv, self).__init__()
2020-07-02 10:15:59 +08:00
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
2020-05-30 08:04:54 +08:00
self.bn = nn.BatchNorm2d(c2)
2020-12-16 14:13:08 +08:00
self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
2020-05-30 08:04:54 +08:00
def forward(self, x):
return self.act(self.bn(self.conv(x)))
2020-06-08 04:42:33 +08:00
def fuseforward(self, x):
return self.act(self.conv(x))
2020-05-30 08:04:54 +08:00
class Bottleneck(nn.Module):
2020-06-09 13:13:01 +08:00
# Standard bottleneck
2020-05-30 08:04:54 +08:00
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
2020-06-09 13:13:01 +08:00
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2020-05-30 08:04:54 +08:00
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
2020-07-02 02:44:49 +08:00
self.cv4 = Conv(2 * c_, c2, 1, 1)
2020-05-30 08:04:54 +08:00
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.LeakyReLU(0.1, inplace=True)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
2020-12-16 14:13:08 +08:00
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(C3, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
2020-06-09 13:13:01 +08:00
class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
2020-05-30 08:04:54 +08:00
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class Focus(nn.Module):
# Focus wh information into c-space
2020-07-02 02:44:49 +08:00
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
2020-05-30 08:04:54 +08:00
super(Focus, self).__init__()
2020-07-02 02:44:49 +08:00
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
2020-05-30 08:04:54 +08:00
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
2020-07-17 08:18:41 +08:00
class NMS(nn.Module):
# Non-Maximum Suppression (NMS) module
2020-10-16 02:10:08 +08:00
conf = 0.25 # confidence threshold
iou = 0.45 # IoU threshold
classes = None # (optional list) filter by class
2020-10-16 02:10:08 +08:00
def __init__(self):
super(NMS, self).__init__()
def forward(self, x):
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
2020-10-16 02:10:08 +08:00
class autoShape(nn.Module):
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
img_size = 640 # inference size (pixels)
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
classes = None # (optional list) filter by class
def __init__(self, model):
super(autoShape, self).__init__()
self.model = model.eval()
2020-10-16 02:10:08 +08:00
def forward(self, imgs, size=640, augment=False, profile=False):
2020-10-16 02:10:08 +08:00
# supports inference from various sources. For height=720, width=1280, RGB images example inputs are:
# opencv: imgs = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
# PIL: imgs = Image.open('image.jpg') # HWC x(720,1280,3)
# numpy: imgs = np.zeros((720,1280,3)) # HWC
# torch: imgs = torch.zeros(16,3,720,1280) # BCHW
# multiple: imgs = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
2020-10-16 02:10:08 +08:00
p = next(self.model.parameters()) # for device and type
if isinstance(imgs, torch.Tensor): # torch
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
2020-10-16 02:10:08 +08:00
# Pre-process
if not isinstance(imgs, list):
imgs = [imgs]
2020-10-16 02:10:08 +08:00
shape0, shape1 = [], [] # image and inference shapes
batch = range(len(imgs)) # batch size
2020-10-16 02:10:08 +08:00
for i in batch:
imgs[i] = np.array(imgs[i]) # to numpy
if imgs[i].shape[0] < 5: # image in CHW
imgs[i] = imgs[i].transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
imgs[i] = imgs[i][:, :, :3] if imgs[i].ndim == 3 else np.tile(imgs[i][:, :, None], 3) # enforce 3ch input
s = imgs[i].shape[:2] # HWC
2020-10-16 02:10:08 +08:00
shape0.append(s) # image shape
g = (size / max(s)) # gain
shape1.append([y * g for y in s])
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
x = [letterbox(imgs[i], new_shape=shape1, auto=False)[0] for i in batch] # pad
2020-10-16 02:10:08 +08:00
x = np.stack(x, 0) if batch[-1] else x[0][None] # stack
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
# Inference
with torch.no_grad():
y = self.model(x, augment, profile)[0] # forward
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
2020-10-16 02:10:08 +08:00
# Post-process
for i in batch:
scale_coords(shape1, y[i][:, :4], shape0[i])
return Detections(imgs, y, self.names)
class Detections:
# detections class for YOLOv5 inference results
def __init__(self, imgs, pred, names=None):
super(Detections, self).__init__()
d = pred[0].device # device
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
self.imgs = imgs # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
self.xyxy = pred # xyxy pixels
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
self.n = len(self.pred)
def display(self, pprint=False, show=False, save=False):
colors = color_list()
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
if pred is not None:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
str += f'{n} {self.names[int(c)]}s, ' # add to string
if show or save:
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
for *box, conf, cls in pred: # xyxy, confidence, class
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
if save:
f = f'results{i}.jpg'
str += f"saved to '{f}'"
img.save(f) # save
if show:
img.show(f'Image {i}') # show
if pprint:
print(str)
def print(self):
self.display(pprint=True) # print results
def show(self):
self.display(show=True) # show results
def save(self):
self.display(save=True) # save results
2020-10-16 02:10:08 +08:00
def __len__(self):
return self.n
def tolist(self):
# return a list of Detections objects, i.e. 'for result in results.tolist():'
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
for d in x:
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
setattr(d, k, getattr(d, k)[0]) # pop out of list
return x
2020-10-16 02:10:08 +08:00
2020-07-17 08:18:41 +08:00
class Flatten(nn.Module):
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class Classify(nn.Module):
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
super(Classify, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
2020-12-04 22:06:33 +08:00
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
2020-07-17 08:18:41 +08:00
self.flat = Flatten()
def forward(self, x):
2020-07-17 14:59:51 +08:00
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
return self.flat(self.conv(z)) # flatten to x(b,c2)