yolov5/utils/plots.py

449 lines
18 KiB
Python
Raw Normal View History

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Plotting utils
"""
import contextlib
import math
import os
from copy import copy
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
2020-12-19 10:05:38 +08:00
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw
from scipy.ndimage.filters import gaussian_filter1d
from ultralytics.utils.plotting import Annotator
from utils import TryExcept, threaded
from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness
2020-11-16 23:34:07 +08:00
# Settings
RANK = int(os.getenv('RANK', -1))
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg') # for writing to files only
2020-11-16 23:34:07 +08:00
2021-04-28 22:05:14 +08:00
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
2021-04-28 22:05:14 +08:00
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
2021-04-28 22:05:14 +08:00
colors = Colors() # create instance for 'from utils.plots import colors'
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
"""
x: Features to be visualized
module_type: Module type
stage: Module stage within model
n: Maximum number of feature maps to plot
save_dir: Directory to save results
"""
if ('Detect'
not in module_type) and ('Segment'
not in module_type): # 'Detect' for Object Detect task,'Segment' for Segment task
batch, channels, height, width = x.shape # batch, channels, height, width
if height > 1 and width > 1:
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
n = min(n, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
ax[i].axis('off')
LOGGER.info(f'Saving {f}... ({n}/{channels})')
plt.savefig(f, dpi=300, bbox_inches='tight')
plt.close()
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
from scipy.signal import butter, filtfilt
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype='low', analog=False)
b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
def output_to_target(output, max_det=300):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
targets = []
for i, o in enumerate(output):
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
return torch.cat(targets, 0).numpy()
@threaded
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
2021-08-30 00:05:49 +08:00
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(targets) > 0:
ti = targets[targets[:, 0] == i] # image targets
boxes = xywh2xyxy(ti[:, 2:6]).T
classes = ti[:, 1].astype('int')
labels = ti.shape[1] == 6 # labels if no conf column
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
cls = classes[j]
2021-04-28 22:05:14 +08:00
color = colors(cls)
cls = names[cls] if names else cls
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
# Plot LR simulating training for full epochs
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
y = []
for _ in range(epochs):
scheduler.step()
y.append(optimizer.param_groups[0]['lr'])
plt.plot(y, '.-', label='LR')
plt.xlabel('epoch')
plt.ylabel('LR')
plt.grid()
plt.xlim(0, epochs)
plt.ylim(0)
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
2021-01-05 07:49:08 +08:00
plt.close()
2021-07-14 21:43:54 +08:00
def plot_val_txt(): # from utils.plots import *; plot_val()
# Plot val.txt histograms
x = np.loadtxt('val.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect('equal')
plt.savefig('hist2d.png', dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
plt.savefig('hist1d.png', dpi=200)
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
# Plot targets.txt histograms
x = np.loadtxt('targets.txt', dtype=np.float32).T
s = ['x targets', 'y targets', 'width targets', 'height targets']
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
ax[i].legend()
ax[i].set_title(s[i])
plt.savefig('targets.jpg', dpi=200)
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
save_dir = Path(file).parent if file else Path(dir)
plot2 = False # plot additional results
if plot2:
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
2021-10-11 16:59:22 +08:00
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
for f in sorted(save_dir.glob('study*.txt')):
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
x = np.arange(y.shape[1]) if x is None else np.array(x)
if plot2:
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
for i in range(7):
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
ax[i].set_title(s[i])
j = y[3].argmax() + 1
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-03-31 22:52:34 +08:00
ax2.plot(y[5, 1:j],
y[3, 1:j] * 1E2,
'.-',
linewidth=2,
markersize=8,
2020-11-27 05:18:17 +08:00
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-03-31 22:52:34 +08:00
'k.-',
linewidth=2,
markersize=8,
alpha=.25,
label='EfficientDet')
2021-02-02 05:51:11 +08:00
ax2.grid(alpha=0.2)
ax2.set_yticks(np.arange(20, 60, 5))
2021-04-12 01:23:47 +08:00
ax2.set_xlim(0, 57)
2021-10-11 16:59:22 +08:00
ax2.set_ylim(25, 55)
ax2.set_xlabel('GPU Speed (ms/img)')
ax2.set_ylabel('COCO AP val')
ax2.legend(loc='lower right')
f = save_dir / 'study.png'
print(f'Saving {f}...')
plt.savefig(f, dpi=300)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(labels, names=(), save_dir=Path('')):
# plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
nc = int(c.max() + 1) # number of classes
2020-12-19 10:05:38 +08:00
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
2020-12-19 10:05:38 +08:00
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
# matplotlib labels
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
2021-05-17 17:44:22 +08:00
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel('classes')
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# rectangles
labels[:, 1:3] = 0.5 # center
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, *box in labels[:1000]:
2021-04-28 22:05:14 +08:00
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis('off')
for a in [0, 1, 2, 3]:
for s in ['top', 'right', 'left', 'bottom']:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / 'labels.jpg', dpi=200)
matplotlib.use('Agg')
plt.close()
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
# Show classification image grid with labels (optional) and predictions (optional)
from utils.augmentations import denormalize
names = names or [f'class{i}' for i in range(1000)]
blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
dim=0) # select batch index 0, block by channels
n = min(len(blocks), nmax) # number of plots
m = min(8, round(n ** 0.5)) # 8 x 8 default
fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols
ax = ax.ravel() if m > 1 else [ax]
# plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
ax[i].axis('off')
if labels is not None:
s = names[labels[i]] + (f'{names[pred[i]]}' if pred is not None else '')
ax[i].set_title(s, fontsize=8, verticalalignment='top')
plt.savefig(f, dpi=300, bbox_inches='tight')
plt.close()
if verbose:
LOGGER.info(f'Saving {f}')
New YOLOv5 Classification Models (#8956) * Update * Logger step fix: Increment step with epochs (#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-08-17 17:59:01 +08:00
if labels is not None:
LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
if pred is not None:
LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
return f
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
# Plot evolve.csv hyp evolution results
evolve_csv = Path(evolve_csv)
data = pd.read_csv(evolve_csv)
keys = [x.strip() for x in data.columns]
x = data.values
f = fitness(x)
j = np.argmax(f) # max fitness index
plt.figure(figsize=(10, 12), tight_layout=True)
matplotlib.rc('font', **{'size': 8})
print(f'Best results from row {j} of {evolve_csv}:')
for i, k in enumerate(keys[7:]):
v = x[:, 7 + i]
mu = v[j] # best single result
plt.subplot(6, 5, i + 1)
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
plt.plot(mu, f.max(), 'k+', markersize=15)
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
if i % 5 != 0:
plt.yticks([])
print(f'{k:>15}: {mu:.3g}')
f = evolve_csv.with_suffix('.png') # filename
plt.savefig(f, dpi=200)
plt.close()
print(f'Saved {f}')
def plot_results(file='path/to/results.csv', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
LOGGER.info(f'Warning: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
files = list(Path(save_dir).glob('frames*.txt'))
for fi, f in enumerate(files):
try:
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
n = results.shape[1] # number of rows
x = np.arange(start, min(stop, n) if stop else n)
results = results[:, x]
t = (results[0] - results[0].min()) # set t0=0s
results[0] = x
for i, a in enumerate(ax):
if i < len(results):
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
a.set_title(s[i])
a.set_xlabel('time (s)')
# if fi == len(files) - 1:
# a.set_ylim(bottom=0)
for side in ['top', 'right']:
a.spines[side].set_visible(False)
else:
a.remove()
except Exception as e:
print(f'Warning: Plotting error for {f}; {e}')
ax[1].legend()
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.tensor(xyxy).view(-1, 4)
b = xyxy2xywh(xyxy) # boxes
if square:
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
xyxy = xywh2xyxy(b).long()
clip_boxes(xyxy, im.shape)
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
if save:
file.parent.mkdir(parents=True, exist_ok=True) # make directory
f = str(increment_path(file).with_suffix('.jpg'))
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB
return crop