2025-01-15 22:31:19 +08:00
|
|
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2021-08-15 03:17:51 +08:00
|
|
|
"""
|
2022-08-23 23:54:51 +08:00
|
|
|
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
|
2021-06-21 23:25:04 +08:00
|
|
|
|
2022-01-03 08:09:45 +08:00
|
|
|
Usage - sources:
|
2022-08-22 07:06:29 +08:00
|
|
|
$ python detect.py --weights yolov5s.pt --source 0 # webcam
|
|
|
|
img.jpg # image
|
|
|
|
vid.mp4 # video
|
2022-11-19 06:48:47 +08:00
|
|
|
screen # screenshot
|
2022-08-22 07:06:29 +08:00
|
|
|
path/ # directory
|
2022-12-04 06:58:58 +08:00
|
|
|
list.txt # list of images
|
|
|
|
list.streams # list of streams
|
2022-08-22 07:06:29 +08:00
|
|
|
'path/*.jpg' # glob
|
2023-09-10 10:59:27 +08:00
|
|
|
'https://youtu.be/LNwODJXcvt4' # YouTube
|
2022-08-22 07:06:29 +08:00
|
|
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
2022-01-03 08:09:45 +08:00
|
|
|
|
|
|
|
Usage - formats:
|
2022-08-22 07:06:29 +08:00
|
|
|
$ python detect.py --weights yolov5s.pt # PyTorch
|
|
|
|
yolov5s.torchscript # TorchScript
|
|
|
|
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
2022-10-21 01:54:07 +08:00
|
|
|
yolov5s_openvino_model # OpenVINO
|
2022-08-22 07:06:29 +08:00
|
|
|
yolov5s.engine # TensorRT
|
2024-07-29 08:09:57 +08:00
|
|
|
yolov5s.mlpackage # CoreML (macOS-only)
|
2022-08-22 07:06:29 +08:00
|
|
|
yolov5s_saved_model # TensorFlow SavedModel
|
|
|
|
yolov5s.pb # TensorFlow GraphDef
|
|
|
|
yolov5s.tflite # TensorFlow Lite
|
|
|
|
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
2022-09-10 18:25:01 +08:00
|
|
|
yolov5s_paddle_model # PaddlePaddle
|
2021-06-21 23:25:04 +08:00
|
|
|
"""
|
|
|
|
|
2020-05-30 08:04:54 +08:00
|
|
|
import argparse
|
2023-09-04 18:52:33 +08:00
|
|
|
import csv
|
2021-10-12 00:47:24 +08:00
|
|
|
import os
|
2022-07-25 19:57:05 +08:00
|
|
|
import platform
|
2021-06-21 23:25:04 +08:00
|
|
|
import sys
|
2020-08-03 06:47:36 +08:00
|
|
|
from pathlib import Path
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2020-08-03 06:47:36 +08:00
|
|
|
import torch
|
2020-06-17 09:56:26 +08:00
|
|
|
|
2021-09-12 04:46:33 +08:00
|
|
|
FILE = Path(__file__).resolve()
|
2021-09-18 21:02:08 +08:00
|
|
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
|
|
|
if str(ROOT) not in sys.path:
|
|
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
2021-10-12 00:47:24 +08:00
|
|
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
2021-06-21 23:25:04 +08:00
|
|
|
|
2023-08-02 02:56:35 +08:00
|
|
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
|
|
|
|
2021-11-09 23:45:02 +08:00
|
|
|
from models.common import DetectMultiBackend
|
2022-09-23 05:58:14 +08:00
|
|
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
2024-01-08 08:29:14 +08:00
|
|
|
from utils.general import (
|
|
|
|
LOGGER,
|
|
|
|
Profile,
|
|
|
|
check_file,
|
|
|
|
check_img_size,
|
|
|
|
check_imshow,
|
|
|
|
check_requirements,
|
|
|
|
colorstr,
|
|
|
|
cv2,
|
|
|
|
increment_path,
|
|
|
|
non_max_suppression,
|
|
|
|
print_args,
|
|
|
|
scale_boxes,
|
|
|
|
strip_optimizer,
|
|
|
|
xyxy2xywh,
|
|
|
|
)
|
2022-08-19 01:55:38 +08:00
|
|
|
from utils.torch_utils import select_device, smart_inference_mode
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
|
2022-08-14 02:38:51 +08:00
|
|
|
@smart_inference_mode()
|
2022-03-31 22:52:34 +08:00
|
|
|
def run(
|
2024-01-08 08:29:14 +08:00
|
|
|
weights=ROOT / "yolov5s.pt", # model path or triton URL
|
|
|
|
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
|
|
|
|
data=ROOT / "data/coco128.yaml", # dataset.yaml path
|
|
|
|
imgsz=(640, 640), # inference size (height, width)
|
|
|
|
conf_thres=0.25, # confidence threshold
|
|
|
|
iou_thres=0.45, # NMS IOU threshold
|
|
|
|
max_det=1000, # maximum detections per image
|
|
|
|
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
|
|
view_img=False, # show results
|
|
|
|
save_txt=False, # save results to *.txt
|
2024-08-25 05:40:38 +08:00
|
|
|
save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
|
2024-01-08 08:29:14 +08:00
|
|
|
save_csv=False, # save results in CSV format
|
|
|
|
save_conf=False, # save confidences in --save-txt labels
|
|
|
|
save_crop=False, # save cropped prediction boxes
|
|
|
|
nosave=False, # do not save images/videos
|
|
|
|
classes=None, # filter by class: --class 0, or --class 0 2 3
|
|
|
|
agnostic_nms=False, # class-agnostic NMS
|
|
|
|
augment=False, # augmented inference
|
|
|
|
visualize=False, # visualize features
|
|
|
|
update=False, # update all models
|
|
|
|
project=ROOT / "runs/detect", # save results to project/name
|
|
|
|
name="exp", # save results to project/name
|
|
|
|
exist_ok=False, # existing project/name ok, do not increment
|
|
|
|
line_thickness=3, # bounding box thickness (pixels)
|
|
|
|
hide_labels=False, # hide labels
|
|
|
|
hide_conf=False, # hide confidences
|
|
|
|
half=False, # use FP16 half-precision inference
|
|
|
|
dnn=False, # use OpenCV DNN for ONNX inference
|
|
|
|
vid_stride=1, # video frame-rate stride
|
2022-03-31 22:52:34 +08:00
|
|
|
):
|
2024-07-09 03:19:04 +08:00
|
|
|
"""
|
|
|
|
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
|
|
|
|
|
|
|
|
Args:
|
2024-07-09 04:05:56 +08:00
|
|
|
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
|
2024-07-16 07:20:57 +08:00
|
|
|
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
|
|
|
|
index. Default is 'data/images'.
|
2024-07-09 04:05:56 +08:00
|
|
|
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
|
|
|
|
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
|
|
|
|
conf_thres (float): Confidence threshold for detections. Default is 0.25.
|
|
|
|
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
|
|
|
|
max_det (int): Maximum number of detections per image. Default is 1000.
|
2024-07-16 07:20:57 +08:00
|
|
|
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
|
|
|
|
best available device.
|
2024-07-09 04:05:56 +08:00
|
|
|
view_img (bool): If True, display inference results using OpenCV. Default is False.
|
|
|
|
save_txt (bool): If True, save results in a text file. Default is False.
|
|
|
|
save_csv (bool): If True, save results in a CSV file. Default is False.
|
|
|
|
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
|
|
|
|
save_crop (bool): If True, save cropped prediction boxes. Default is False.
|
|
|
|
nosave (bool): If True, do not save inference images or videos. Default is False.
|
|
|
|
classes (list[int]): List of class indices to filter detections by. Default is None.
|
|
|
|
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
|
|
|
|
augment (bool): If True, use augmented inference. Default is False.
|
|
|
|
visualize (bool): If True, visualize feature maps. Default is False.
|
|
|
|
update (bool): If True, update all models' weights. Default is False.
|
|
|
|
project (str | Path): Directory to save results. Default is 'runs/detect'.
|
|
|
|
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
|
|
|
|
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
|
|
|
|
False.
|
|
|
|
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
|
|
|
|
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
|
|
|
|
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
|
|
|
|
half (bool): If True, use FP16 half-precision inference. Default is False.
|
|
|
|
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
|
|
|
|
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Returns:
|
2024-07-09 04:05:56 +08:00
|
|
|
None
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Examples:
|
2024-07-16 07:20:57 +08:00
|
|
|
```python
|
|
|
|
from ultralytics import run
|
2024-07-09 03:19:04 +08:00
|
|
|
|
2024-07-16 07:20:57 +08:00
|
|
|
# Run inference on an image
|
|
|
|
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
|
2024-07-09 03:19:04 +08:00
|
|
|
|
2024-07-16 07:20:57 +08:00
|
|
|
# Run inference on a video with specific confidence threshold
|
|
|
|
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
|
|
|
|
```
|
2024-07-09 03:19:04 +08:00
|
|
|
"""
|
2021-09-28 08:40:20 +08:00
|
|
|
source = str(source)
|
2024-01-08 08:29:14 +08:00
|
|
|
save_img = not nosave and not source.endswith(".txt") # save inference images
|
2021-11-06 01:43:03 +08:00
|
|
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
2024-01-08 08:29:14 +08:00
|
|
|
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
|
|
|
|
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
|
|
|
screenshot = source.lower().startswith("screen")
|
2021-11-06 01:43:03 +08:00
|
|
|
if is_url and is_file:
|
|
|
|
source = check_file(source) # download
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2020-11-09 02:39:05 +08:00
|
|
|
# Directories
|
2021-06-10 04:19:34 +08:00
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
2024-01-08 08:29:14 +08:00
|
|
|
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
2020-11-09 02:39:05 +08:00
|
|
|
|
2021-11-09 23:45:02 +08:00
|
|
|
# Load model
|
2021-06-10 04:19:34 +08:00
|
|
|
device = select_device(device)
|
2022-03-11 23:31:52 +08:00
|
|
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
|
|
|
stride, names, pt = model.stride, model.names, model.pt
|
2021-11-09 23:45:02 +08:00
|
|
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2021-07-04 18:55:57 +08:00
|
|
|
# Dataloader
|
2022-09-25 22:21:26 +08:00
|
|
|
bs = 1 # batch_size
|
2020-05-30 08:04:54 +08:00
|
|
|
if webcam:
|
2022-10-17 20:34:33 +08:00
|
|
|
view_img = check_imshow(warn=True)
|
2022-09-04 23:15:53 +08:00
|
|
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
2022-09-25 22:21:26 +08:00
|
|
|
bs = len(dataset)
|
2022-09-23 05:58:14 +08:00
|
|
|
elif screenshot:
|
|
|
|
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
2020-05-30 08:04:54 +08:00
|
|
|
else:
|
2022-09-04 23:15:53 +08:00
|
|
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
2021-07-04 18:55:57 +08:00
|
|
|
vid_path, vid_writer = [None] * bs, [None] * bs
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Run inference
|
2022-09-24 06:56:42 +08:00
|
|
|
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
2024-01-03 15:09:23 +08:00
|
|
|
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
|
2021-11-09 23:45:02 +08:00
|
|
|
for path, im, im0s, vid_cap, s in dataset:
|
2022-08-19 01:55:38 +08:00
|
|
|
with dt[0]:
|
2022-09-24 06:56:42 +08:00
|
|
|
im = torch.from_numpy(im).to(model.device)
|
2022-08-19 01:55:38 +08:00
|
|
|
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
|
|
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
im = im[None] # expand for batch dim
|
2024-01-03 15:10:10 +08:00
|
|
|
if model.xml and im.shape[0] > 1:
|
|
|
|
ims = torch.chunk(im, im.shape[0], 0)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Inference
|
2022-08-19 01:55:38 +08:00
|
|
|
with dt[1]:
|
|
|
|
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
2024-01-03 15:10:10 +08:00
|
|
|
if model.xml and im.shape[0] > 1:
|
|
|
|
pred = None
|
|
|
|
for image in ims:
|
|
|
|
if pred is None:
|
|
|
|
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
|
|
|
|
else:
|
|
|
|
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
|
|
|
|
pred = [pred, None]
|
|
|
|
else:
|
|
|
|
pred = model(im, augment=augment, visualize=visualize)
|
2021-07-24 19:08:51 +08:00
|
|
|
# NMS
|
2022-08-19 01:55:38 +08:00
|
|
|
with dt[2]:
|
|
|
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2021-07-24 19:08:51 +08:00
|
|
|
# Second-stage classifier (optional)
|
2021-11-09 23:45:02 +08:00
|
|
|
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2023-09-04 18:52:33 +08:00
|
|
|
# Define the path for the CSV file
|
2024-01-08 08:29:14 +08:00
|
|
|
csv_path = save_dir / "predictions.csv"
|
2023-09-04 18:52:33 +08:00
|
|
|
|
|
|
|
# Create or append to the CSV file
|
|
|
|
def write_to_csv(image_name, prediction, confidence):
|
2024-02-25 21:04:01 +08:00
|
|
|
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
|
2024-01-08 08:29:14 +08:00
|
|
|
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
|
2025-01-02 04:46:59 +08:00
|
|
|
file_exists = os.path.isfile(csv_path)
|
2024-01-08 08:29:14 +08:00
|
|
|
with open(csv_path, mode="a", newline="") as f:
|
2023-09-04 18:52:33 +08:00
|
|
|
writer = csv.DictWriter(f, fieldnames=data.keys())
|
2025-01-02 04:46:59 +08:00
|
|
|
if not file_exists:
|
2023-09-04 18:52:33 +08:00
|
|
|
writer.writeheader()
|
|
|
|
writer.writerow(data)
|
|
|
|
|
2021-07-24 19:08:51 +08:00
|
|
|
# Process predictions
|
2021-09-10 20:34:09 +08:00
|
|
|
for i, det in enumerate(pred): # per image
|
|
|
|
seen += 1
|
2020-05-30 08:04:54 +08:00
|
|
|
if webcam: # batch_size >= 1
|
2021-11-02 01:22:13 +08:00
|
|
|
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
2024-01-08 08:29:14 +08:00
|
|
|
s += f"{i}: "
|
2020-05-30 08:04:54 +08:00
|
|
|
else:
|
2024-01-08 08:29:14 +08:00
|
|
|
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2020-12-18 09:20:20 +08:00
|
|
|
p = Path(p) # to Path
|
2021-11-09 23:45:02 +08:00
|
|
|
save_path = str(save_dir / p.name) # im.jpg
|
2024-01-08 08:29:14 +08:00
|
|
|
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
|
2024-09-01 23:35:08 +08:00
|
|
|
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
|
2020-06-29 19:56:40 +08:00
|
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
2021-06-10 04:19:34 +08:00
|
|
|
imc = im0.copy() if save_crop else im0 # for save_crop
|
2021-09-28 04:48:15 +08:00
|
|
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
2020-11-17 06:09:55 +08:00
|
|
|
if len(det):
|
2020-05-30 08:04:54 +08:00
|
|
|
# Rescale boxes from img_size to im0 size
|
2022-09-24 22:02:41 +08:00
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Print results
|
YOLOv5 segmentation model support (#9052)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix duplicate plots.py
* Fix check_font()
* # torch.use_deterministic_algorithms(True)
* update doc detect->predict
* Resolve precommit for segment/train and segment/val
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Resolve precommit for utils/segment
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Resolve precommit min_wh
* Resolve precommit utils/segment/plots
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Resolve precommit utils/segment/general
* Align NMS-seg closer to NMS
* restore deterministic init_seeds code
* remove easydict dependency
* update
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* restore output_to_target mask
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update
* cleanup
* Remove unused ImageFont import
* Unified NMS
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* DetectMultiBackend compatibility
* segment/predict.py update
* update plot colors
* fix bbox shifted
* sort bbox by confidence
* enable overlap by default
* Merge detect/segment output_to_target() function
* Start segmentation CI
* fix plots
* Update ci-testing.yml
* fix training whitespace
* optimize process mask functions (can we merge both?)
* Update predict/detect
* Update plot_images
* Update plot_images_and_masks
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Add train to CI
* fix precommit
* fix precommit CI
* fix precommit pycocotools
* fix val float issues
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix masks float float issues
* suppress errors
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix no-predictions plotting bug
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add CSV Logger
* fix val len(plot_masks)
* speed up evaluation
* fix process_mask
* fix plots
* update segment/utils build_targets
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* optimize utils/segment/general crop()
* optimize utils/segment/general crop() 2
* minor updates
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* torch.where revert
* downsample only if different shape
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* loss cleanup
* loss cleanup 2
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* loss cleanup 3
* update project names
* Rename -seg yamls from _underscore to -dash
* prepare for yolov5n-seg.pt
* precommit space fix
* add coco128-seg.yaml
* update coco128-seg comments
* cleanup val.py
* Major val.py cleanup
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* precommit fix
* precommit fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* optional pycocotools
* remove CI pip install pycocotools (auto-installed now)
* seg yaml fix
* optimize mask_iou() and masks_iou()
* threaded fix
* Major train.py update
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Major segments/val/process_batch() update
* yolov5/val updates from segment
* process_batch numpy/tensor fix
* opt-in to pycocotools with --save-json
* threaded pycocotools ops for 2x speed increase
* Avoid permute contiguous if possible
* Add max_det=300 argument to both val.py and segment/val.py
* fix onnx_dynamic
* speed up pycocotools ops
* faster process_mask(upsample=True) for predict
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* eliminate permutations for process_mask(upsample=True)
* eliminate permute-contiguous in crop(), use native dimension order
* cleanup comment
* Add Proto() module
* fix class count
* fix anchor order
* broadcast mask_gti in loss for speed
* Cleanup seg loss
* faster indexing
* faster indexing fix
* faster indexing fix2
* revert faster indexing
* fix validation plotting
* Loss cleanup and mxyxy simplification
* Loss cleanup and mxyxy simplification 2
* revert validation plotting
* replace missing tanh
* Eliminate last permutation
* delete unneeded .float()
* Remove MaskIOULoss and crop(if HWC)
* Final v6.3 SegmentationModel architecture updates
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add support for TF export
* remove debugger trace
* add call
* update
* update
* Merge master
* Merge master
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update dataloaders.py
* Restore CI
* Update dataloaders.py
* Fix TF/TFLite export for segmentation model
* Merge master
* Cleanup predict.py mask plotting
* cleanup scale_masks()
* rename scale_masks to scale_image
* cleanup/optimize plot_masks
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add Annotator.masks()
* Annotator.masks() fix
* Update plots.py
* Annotator mask optimization
* Rename crop() to crop_mask()
* Do not crop in predict.py
* crop always
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Merge master
* Add vid-stride from master PR
* Update seg model outputs
* Update seg model outputs
* Add segmentation benchmarks
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add segmentation benchmarks
* Add segmentation benchmarks
* Add segmentation benchmarks
* Fix DetectMultiBackend for OpenVINO
* update Annotator.masks
* fix val plot
* revert val plot
* clean up
* revert pil
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix CI error
* fix predict log
* remove upsample
* update interpolate
* fix validation plot logging
* Annotator.masks() cleanup
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Remove segmentation_model definition
* Restore 0.99999 decimals
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
|
|
|
for c in det[:, 5].unique():
|
|
|
|
n = (det[:, 5] == c).sum() # detections per class
|
2021-01-23 07:39:08 +08:00
|
|
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Write results
|
2020-08-13 04:50:16 +08:00
|
|
|
for *xyxy, conf, cls in reversed(det):
|
2023-09-04 18:52:33 +08:00
|
|
|
c = int(cls) # integer class
|
2024-01-08 08:29:14 +08:00
|
|
|
label = names[c] if hide_conf else f"{names[c]}"
|
2023-09-04 18:52:33 +08:00
|
|
|
confidence = float(conf)
|
2024-01-08 08:29:14 +08:00
|
|
|
confidence_str = f"{confidence:.2f}"
|
2023-09-04 18:52:33 +08:00
|
|
|
|
|
|
|
if save_csv:
|
|
|
|
write_to_csv(p.name, label, confidence_str)
|
|
|
|
|
2020-05-30 08:04:54 +08:00
|
|
|
if save_txt: # Write to file
|
2024-08-25 05:40:38 +08:00
|
|
|
if save_format == 0:
|
|
|
|
coords = (
|
|
|
|
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
|
|
|
|
) # normalized xywh
|
|
|
|
else:
|
|
|
|
coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
|
|
|
|
line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
|
2024-01-08 08:29:14 +08:00
|
|
|
with open(f"{txt_path}.txt", "a") as f:
|
|
|
|
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2021-06-10 04:19:34 +08:00
|
|
|
if save_img or save_crop or view_img: # Add bbox to image
|
2021-04-21 05:51:08 +08:00
|
|
|
c = int(cls) # integer class
|
2024-01-08 08:29:14 +08:00
|
|
|
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
|
2021-08-29 22:46:13 +08:00
|
|
|
annotator.box_label(xyxy, label, color=colors(c, True))
|
2022-05-15 22:38:26 +08:00
|
|
|
if save_crop:
|
2024-01-08 08:29:14 +08:00
|
|
|
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Stream results
|
2021-08-29 22:46:13 +08:00
|
|
|
im0 = annotator.result()
|
2020-05-30 08:04:54 +08:00
|
|
|
if view_img:
|
2024-01-08 08:29:14 +08:00
|
|
|
if platform.system() == "Linux" and p not in windows:
|
2022-06-27 06:04:11 +08:00
|
|
|
windows.append(p)
|
|
|
|
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
|
|
|
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
2020-11-18 17:03:41 +08:00
|
|
|
cv2.imshow(str(p), im0)
|
2021-02-17 05:56:47 +08:00
|
|
|
cv2.waitKey(1) # 1 millisecond
|
2020-05-30 08:04:54 +08:00
|
|
|
|
|
|
|
# Save results (image with detections)
|
|
|
|
if save_img:
|
2024-01-08 08:29:14 +08:00
|
|
|
if dataset.mode == "image":
|
2020-05-30 08:04:54 +08:00
|
|
|
cv2.imwrite(save_path, im0)
|
2021-03-25 21:09:49 +08:00
|
|
|
else: # 'video' or 'stream'
|
2021-07-04 18:55:57 +08:00
|
|
|
if vid_path[i] != save_path: # new video
|
|
|
|
vid_path[i] = save_path
|
|
|
|
if isinstance(vid_writer[i], cv2.VideoWriter):
|
|
|
|
vid_writer[i].release() # release previous video writer
|
2021-03-25 21:09:49 +08:00
|
|
|
if vid_cap: # video
|
|
|
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
else: # stream
|
|
|
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
2024-01-08 08:29:14 +08:00
|
|
|
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
|
|
|
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
2021-07-04 18:55:57 +08:00
|
|
|
vid_writer[i].write(im0)
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2022-02-05 01:19:37 +08:00
|
|
|
# Print time (inference-only)
|
2025-01-10 08:42:04 +08:00
|
|
|
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")
|
2022-02-05 01:19:37 +08:00
|
|
|
|
2021-09-10 20:34:09 +08:00
|
|
|
# Print results
|
2024-01-08 08:29:14 +08:00
|
|
|
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
|
|
|
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
|
2020-05-30 08:04:54 +08:00
|
|
|
if save_txt or save_img:
|
2024-01-08 08:29:14 +08:00
|
|
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
|
2021-11-02 01:22:13 +08:00
|
|
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
2021-06-10 04:19:34 +08:00
|
|
|
if update:
|
2022-07-29 23:07:24 +08:00
|
|
|
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
2021-06-10 04:19:34 +08:00
|
|
|
|
2020-05-30 08:04:54 +08:00
|
|
|
|
2021-06-19 18:06:59 +08:00
|
|
|
def parse_opt():
|
2024-07-09 03:19:04 +08:00
|
|
|
"""
|
2024-07-16 07:20:57 +08:00
|
|
|
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Args:
|
|
|
|
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
|
|
|
|
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
|
|
|
|
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
|
|
|
|
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
|
|
|
|
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
|
|
|
|
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
|
|
|
|
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
|
|
|
|
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
|
|
|
|
--view-img (bool, optional): Flag to display results. Defaults to False.
|
|
|
|
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
|
|
|
|
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
|
|
|
|
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
|
|
|
|
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
|
|
|
|
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
|
|
|
|
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
|
|
|
|
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
|
|
|
|
--augment (bool, optional): Flag for augmented inference. Defaults to False.
|
|
|
|
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
|
|
|
|
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
|
|
|
|
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
|
|
|
|
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
|
|
|
|
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
|
|
|
|
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
|
|
|
|
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
|
|
|
|
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
|
|
|
|
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
|
|
|
|
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
|
2024-07-16 07:20:57 +08:00
|
|
|
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
|
|
|
|
consecutive frames. Defaults to 1.
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLOv5
|
|
|
|
args = YOLOv5.parse_opt()
|
|
|
|
```
|
|
|
|
"""
|
2020-05-30 08:04:54 +08:00
|
|
|
parser = argparse.ArgumentParser()
|
2024-01-08 08:29:14 +08:00
|
|
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
|
|
|
|
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
|
|
|
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
|
|
|
|
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
|
|
|
|
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
|
|
|
|
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
|
|
|
|
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
|
|
|
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
|
|
|
|
parser.add_argument("--view-img", action="store_true", help="show results")
|
|
|
|
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
|
2024-08-25 05:40:38 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--save-format",
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
|
|
|
|
)
|
2024-01-08 08:29:14 +08:00
|
|
|
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
|
|
|
|
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
|
|
|
|
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
|
|
|
|
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
|
|
|
|
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
|
|
|
|
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
|
|
|
|
parser.add_argument("--augment", action="store_true", help="augmented inference")
|
|
|
|
parser.add_argument("--visualize", action="store_true", help="visualize features")
|
|
|
|
parser.add_argument("--update", action="store_true", help="update all models")
|
|
|
|
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
|
|
|
|
parser.add_argument("--name", default="exp", help="save results to project/name")
|
|
|
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
|
|
|
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
|
|
|
|
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
|
|
|
|
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
|
|
|
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
|
|
|
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
|
|
|
|
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
|
2020-05-30 08:04:54 +08:00
|
|
|
opt = parser.parse_args()
|
Add TensorFlow and TFLite export (#1127)
* Add models/tf.py for TensorFlow and TFLite export
* Set auto=False for int8 calibration
* Update requirements.txt for TensorFlow and TFLite export
* Read anchors directly from PyTorch weights
* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
* Remove check_anchor_order, check_file, set_logging from import
* Reformat code and optimize imports
* Autodownload model and check cfg
* update --source path, img-size to 320, single output
* Adjust representative_dataset
* Put representative dataset in tfl_int8 block
* detect.py TF inference
* weights to string
* weights to string
* cleanup tf.py
* Add --dynamic-batch-size
* Add xywh normalization to reduce calibration error
* Update requirements.txt
TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
* Fix imports
Move C3 from models.experimental to models.common
* Add models/tf.py for TensorFlow and TFLite export
* Set auto=False for int8 calibration
* Update requirements.txt for TensorFlow and TFLite export
* Read anchors directly from PyTorch weights
* Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export
* Remove check_anchor_order, check_file, set_logging from import
* Reformat code and optimize imports
* Autodownload model and check cfg
* update --source path, img-size to 320, single output
* Adjust representative_dataset
* detect.py TF inference
* Put representative dataset in tfl_int8 block
* weights to string
* weights to string
* cleanup tf.py
* Add --dynamic-batch-size
* Add xywh normalization to reduce calibration error
* Update requirements.txt
TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error
* Fix imports
Move C3 from models.experimental to models.common
* implement C3() and SiLU()
* Fix reshape dim to support dynamic batching
* Add epsilon argument in tf_BN, which is different between TF and PT
* Set stride to None if not using PyTorch, and do not warmup without PyTorch
* Add list support in check_img_size()
* Add list input support in detect.py
* sys.path.append('./') to run from yolov5/
* Add int8 quantization support for TensorFlow 2.5
* Add get_coco128.sh
* Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU)
* Update requirements.txt
* Replace torch.load() with attempt_load()
* Update requirements.txt
* Add --tf-raw-resize to set half_pixel_centers=False
* Add --agnostic-nms for TF class-agnostic NMS
* Cleanup after merge
* Cleanup2 after merge
* Cleanup3 after merge
* Add tf.py docstring with credit and usage
* pb saved_model and tflite use only one model in detect.py
* Add use cases in docstring of tf.py
* Remove redundant `stride` definition
* Remove keras direct import
* Fix `check_requirements(('tensorflow>=2.4.1',))`
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2021-08-17 19:18:16 +08:00
|
|
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
2022-03-31 23:11:43 +08:00
|
|
|
print_args(vars(opt))
|
2021-06-19 18:06:59 +08:00
|
|
|
return opt
|
|
|
|
|
|
|
|
|
|
|
|
def main(opt):
|
2024-07-09 03:19:04 +08:00
|
|
|
"""
|
|
|
|
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
|
|
|
|
|
|
|
|
Args:
|
2024-07-09 04:05:56 +08:00
|
|
|
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Returns:
|
2024-07-09 04:05:56 +08:00
|
|
|
None
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Note:
|
2024-07-16 07:20:57 +08:00
|
|
|
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
|
|
|
|
options. Refer to the usage guide and examples for more information about different sources and formats at:
|
2024-07-09 04:05:56 +08:00
|
|
|
https://github.com/ultralytics/ultralytics
|
2024-07-09 03:19:04 +08:00
|
|
|
|
|
|
|
Example usage:
|
|
|
|
|
|
|
|
```python
|
|
|
|
if __name__ == "__main__":
|
|
|
|
opt = parse_opt()
|
|
|
|
main(opt)
|
|
|
|
```
|
|
|
|
"""
|
2024-01-08 08:29:14 +08:00
|
|
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
|
2021-06-21 23:25:04 +08:00
|
|
|
run(**vars(opt))
|
2021-06-19 18:06:59 +08:00
|
|
|
|
|
|
|
|
2024-01-08 08:29:14 +08:00
|
|
|
if __name__ == "__main__":
|
2021-06-19 18:06:59 +08:00
|
|
|
opt = parse_opt()
|
|
|
|
main(opt)
|