yolov5/detect.py

439 lines
23 KiB
Python
Raw Normal View History

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlpackage # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
2022-09-10 18:25:01 +08:00
yolov5s_paddle_model # PaddlePaddle
"""
2020-05-30 08:04:54 +08:00
import argparse
import csv
import os
import platform
import sys
from pathlib import Path
2020-05-30 08:04:54 +08:00
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from models.common import DetectMultiBackend
Add `--source screen` for screenshot inference (#9542) * add screenshot as source * fix: screen number support * Fix: mutiple screen specific area * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * parse screen args in LoadScreenshots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * sequence+ '_' as file name for save-txt save-crop * screenshot as stream * Update requirements.txt Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update README.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update tutorial.ipynb Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: xin <xin@zhiyoung.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-09-23 05:58:14 +08:00
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
strip_optimizer,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
2020-05-30 08:04:54 +08:00
@smart_inference_mode()
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-03-31 22:52:34 +08:00
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC)
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
precommit: yapf (#5494) * precommit: yapf * align isort * fix # Conflicts: # utils/plots.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update setup.cfg * Update setup.cfg * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update wandb_utils.py * Update augmentations.py * Update setup.cfg * Update yolo.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update val.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * simplify colorstr * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * val run fix * export.py last comma * Update export.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update hubconf.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * PyTorch Hub tuple fix * PyTorch Hub tuple fix2 * PyTorch Hub tuple fix3 * Update setup Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-03-31 22:52:34 +08:00
):
"""
Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.
Args:
weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.
source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam
index. Default is 'data/images'.
data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).
conf_thres (float): Confidence threshold for detections. Default is 0.25.
iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.
max_det (int): Maximum number of detections per image. Default is 1000.
device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the
best available device.
view_img (bool): If True, display inference results using OpenCV. Default is False.
save_txt (bool): If True, save results in a text file. Default is False.
save_csv (bool): If True, save results in a CSV file. Default is False.
save_conf (bool): If True, include confidence scores in the saved results. Default is False.
save_crop (bool): If True, save cropped prediction boxes. Default is False.
nosave (bool): If True, do not save inference images or videos. Default is False.
classes (list[int]): List of class indices to filter detections by. Default is None.
agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.
augment (bool): If True, use augmented inference. Default is False.
visualize (bool): If True, visualize feature maps. Default is False.
update (bool): If True, update all models' weights. Default is False.
project (str | Path): Directory to save results. Default is 'runs/detect'.
name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.
exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is
False.
line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.
hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.
hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.
half (bool): If True, use FP16 half-precision inference. Default is False.
dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.
vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.
Returns:
None
Examples:
```python
from ultralytics import run
# Run inference on an image
run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')
# Run inference on a video with specific confidence threshold
run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')
```
"""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
2020-05-30 08:04:54 +08:00
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
2020-05-30 08:04:54 +08:00
# Dataloader
bs = 1 # batch_size
2020-05-30 08:04:54 +08:00
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
Add `--source screen` for screenshot inference (#9542) * add screenshot as source * fix: screen number support * Fix: mutiple screen specific area * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * parse screen args in LoadScreenshots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * sequence+ '_' as file name for save-txt save-crop * screenshot as stream * Update requirements.txt Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update dataloaders.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update README.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update tutorial.ipynb Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: xin <xin@zhiyoung.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-09-23 05:58:14 +08:00
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
2020-05-30 08:04:54 +08:00
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
2020-05-30 08:04:54 +08:00
# Run inference
Detect.py supports running against a Triton container (#9228) * update coco128-seg comments * Enables detect.py to use Triton for inference Triton Inference Server is an open source inference serving software that streamlines AI inferencing. https://github.com/triton-inference-server/server The user can now provide a "--triton-url" argument to detect.py to use a local or remote Triton server for inference. For e.g., http://localhost:8000 will use http over port 8000 and grpc://localhost:8001 will use grpc over port 8001. Note, it is not necessary to specify a weights file to use Triton. A Triton container can be created by first exporting the Yolov5 model to a Triton supported runtime. Onnx, Torchscript, TensorRT are supported by both Triton and the export.py script. The exported model can then be containerized via the OctoML CLI. See https://github.com/octoml/octo-cli#getting-started for a guide. * added triton client to requirements * fixed support for TFSavedModels in Triton * reverted change * Test CoreML update Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Use pathlib Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Refacto DetectMultiBackend to directly accept triton url as --weights http://... Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Deploy category Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add printout and requirements check * Cleanup Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * triton fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed triton model query over grpc * Update check_requirements('tritonclient[all]') * group imports * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix likely remote URL bug * update comment * Update is_url() * Fix 2x download attempt on http://path/to/model.pt Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: glennjocher <glenn.jocher@ultralytics.com> Co-authored-by: Gaz Iqbal <giqbal@octoml.ai> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-09-24 06:56:42 +08:00
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
Detect.py supports running against a Triton container (#9228) * update coco128-seg comments * Enables detect.py to use Triton for inference Triton Inference Server is an open source inference serving software that streamlines AI inferencing. https://github.com/triton-inference-server/server The user can now provide a "--triton-url" argument to detect.py to use a local or remote Triton server for inference. For e.g., http://localhost:8000 will use http over port 8000 and grpc://localhost:8001 will use grpc over port 8001. Note, it is not necessary to specify a weights file to use Triton. A Triton container can be created by first exporting the Yolov5 model to a Triton supported runtime. Onnx, Torchscript, TensorRT are supported by both Triton and the export.py script. The exported model can then be containerized via the OctoML CLI. See https://github.com/octoml/octo-cli#getting-started for a guide. * added triton client to requirements * fixed support for TFSavedModels in Triton * reverted change * Test CoreML update Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update ci-testing.yml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Use pathlib Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Refacto DetectMultiBackend to directly accept triton url as --weights http://... Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Deploy category Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update detect.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update common.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update predict.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update triton.py Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add printout and requirements check * Cleanup Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * triton fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed triton model query over grpc * Update check_requirements('tritonclient[all]') * group imports * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix likely remote URL bug * update comment * Update is_url() * Fix 2x download attempt on http://path/to/model.pt Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: glennjocher <glenn.jocher@ultralytics.com> Co-authored-by: Gaz Iqbal <giqbal@octoml.ai> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-09-24 06:56:42 +08:00
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
2020-05-30 08:04:54 +08:00
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
pred = [pred, None]
else:
pred = model(im, augment=augment, visualize=visualize)
2021-07-24 19:08:51 +08:00
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
2020-05-30 08:04:54 +08:00
2021-07-24 19:08:51 +08:00
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
2020-05-30 08:04:54 +08:00
# Define the path for the CSV file
csv_path = save_dir / "predictions.csv"
# Create or append to the CSV file
def write_to_csv(image_name, prediction, confidence):
2024-02-25 21:04:01 +08:00
"""Writes prediction data for an image to a CSV file, appending if the file exists."""
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
file_exists = os.path.isfile(csv_path)
with open(csv_path, mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=data.keys())
if not file_exists:
writer.writeheader()
writer.writerow(data)
2021-07-24 19:08:51 +08:00
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
2020-05-30 08:04:54 +08:00
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
2020-05-30 08:04:54 +08:00
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
2020-05-30 08:04:54 +08:00
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
2020-05-30 08:04:54 +08:00
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
2020-05-30 08:04:54 +08:00
# Print results
YOLOv5 segmentation model support (#9052) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix duplicate plots.py * Fix check_font() * # torch.use_deterministic_algorithms(True) * update doc detect->predict * Resolve precommit for segment/train and segment/val * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit for utils/segment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit min_wh * Resolve precommit utils/segment/plots * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Resolve precommit utils/segment/general * Align NMS-seg closer to NMS * restore deterministic init_seeds code * remove easydict dependency * update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * restore output_to_target mask * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * cleanup * Remove unused ImageFont import * Unified NMS * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * DetectMultiBackend compatibility * segment/predict.py update * update plot colors * fix bbox shifted * sort bbox by confidence * enable overlap by default * Merge detect/segment output_to_target() function * Start segmentation CI * fix plots * Update ci-testing.yml * fix training whitespace * optimize process mask functions (can we merge both?) * Update predict/detect * Update plot_images * Update plot_images_and_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Add train to CI * fix precommit * fix precommit CI * fix precommit pycocotools * fix val float issues * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix masks float float issues * suppress errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix no-predictions plotting bug * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add CSV Logger * fix val len(plot_masks) * speed up evaluation * fix process_mask * fix plots * update segment/utils build_targets * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optimize utils/segment/general crop() * optimize utils/segment/general crop() 2 * minor updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * torch.where revert * downsample only if different shape * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup * loss cleanup 2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * loss cleanup 3 * update project names * Rename -seg yamls from _underscore to -dash * prepare for yolov5n-seg.pt * precommit space fix * add coco128-seg.yaml * update coco128-seg comments * cleanup val.py * Major val.py cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * precommit fix * precommit fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * optional pycocotools * remove CI pip install pycocotools (auto-installed now) * seg yaml fix * optimize mask_iou() and masks_iou() * threaded fix * Major train.py update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Major segments/val/process_batch() update * yolov5/val updates from segment * process_batch numpy/tensor fix * opt-in to pycocotools with --save-json * threaded pycocotools ops for 2x speed increase * Avoid permute contiguous if possible * Add max_det=300 argument to both val.py and segment/val.py * fix onnx_dynamic * speed up pycocotools ops * faster process_mask(upsample=True) for predict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * eliminate permutations for process_mask(upsample=True) * eliminate permute-contiguous in crop(), use native dimension order * cleanup comment * Add Proto() module * fix class count * fix anchor order * broadcast mask_gti in loss for speed * Cleanup seg loss * faster indexing * faster indexing fix * faster indexing fix2 * revert faster indexing * fix validation plotting * Loss cleanup and mxyxy simplification * Loss cleanup and mxyxy simplification 2 * revert validation plotting * replace missing tanh * Eliminate last permutation * delete unneeded .float() * Remove MaskIOULoss and crop(if HWC) * Final v6.3 SegmentationModel architecture updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add support for TF export * remove debugger trace * add call * update * update * Merge master * Merge master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update dataloaders.py * Restore CI * Update dataloaders.py * Fix TF/TFLite export for segmentation model * Merge master * Cleanup predict.py mask plotting * cleanup scale_masks() * rename scale_masks to scale_image * cleanup/optimize plot_masks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Annotator.masks() * Annotator.masks() fix * Update plots.py * Annotator mask optimization * Rename crop() to crop_mask() * Do not crop in predict.py * crop always * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Merge master * Add vid-stride from master PR * Update seg model outputs * Update seg model outputs * Add segmentation benchmarks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add segmentation benchmarks * Add segmentation benchmarks * Add segmentation benchmarks * Fix DetectMultiBackend for OpenVINO * update Annotator.masks * fix val plot * revert val plot * clean up * revert pil * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix CI error * fix predict log * remove upsample * update interpolate * fix validation plot logging * Annotator.masks() cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove segmentation_model definition * Restore 0.99999 decimals Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Jiacong Fang <zldrobit@126.com>
2022-09-16 06:12:46 +08:00
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
2020-05-30 08:04:54 +08:00
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"
if save_csv:
write_to_csv(p.name, label, confidence_str)
2020-05-30 08:04:54 +08:00
if save_txt: # Write to file
if save_format == 0:
coords = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
) # normalized xywh
else:
coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy
line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
2020-05-30 08:04:54 +08:00
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
2020-05-30 08:04:54 +08:00
# Stream results
im0 = annotator.result()
2020-05-30 08:04:54 +08:00
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
2020-05-30 08:04:54 +08:00
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
2020-05-30 08:04:54 +08:00
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
2020-05-30 08:04:54 +08:00
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
2020-05-30 08:04:54 +08:00
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
2020-05-30 08:04:54 +08:00
def parse_opt():
"""
Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.
Args:
--weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.
--source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.
--data (str, optional): Dataset YAML path. Provides dataset configuration information.
--imgsz (list[int], optional): Inference size (height, width). Defaults to [640].
--conf-thres (float, optional): Confidence threshold. Defaults to 0.25.
--iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.
--max-det (int, optional): Maximum number of detections per image. Defaults to 1000.
--device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".
--view-img (bool, optional): Flag to display results. Defaults to False.
--save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.
--save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.
--save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.
--save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.
--nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.
--classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.
--agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.
--augment (bool, optional): Flag for augmented inference. Defaults to False.
--visualize (bool, optional): Flag for visualizing features. Defaults to False.
--update (bool, optional): Flag to update all models in the model directory. Defaults to False.
--project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.
--name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.
--exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.
--line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.
--hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.
--hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.
--half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.
--dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.
--vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between
consecutive frames. Defaults to 1.
Returns:
argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.
Example:
```python
from ultralytics import YOLOv5
args = YOLOv5.parse_opt()
```
"""
2020-05-30 08:04:54 +08:00
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-format",
type=int,
default=0,
help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC",
)
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
2020-05-30 08:04:54 +08:00
opt = parser.parse_args()
Add TensorFlow and TFLite export (#1127) * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * Put representative dataset in tfl_int8 block * detect.py TF inference * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * Add models/tf.py for TensorFlow and TFLite export * Set auto=False for int8 calibration * Update requirements.txt for TensorFlow and TFLite export * Read anchors directly from PyTorch weights * Add --tf-nms to append NMS in TensorFlow SavedModel and GraphDef export * Remove check_anchor_order, check_file, set_logging from import * Reformat code and optimize imports * Autodownload model and check cfg * update --source path, img-size to 320, single output * Adjust representative_dataset * detect.py TF inference * Put representative dataset in tfl_int8 block * weights to string * weights to string * cleanup tf.py * Add --dynamic-batch-size * Add xywh normalization to reduce calibration error * Update requirements.txt TensorFlow 2.3.1 -> 2.4.0 to avoid int8 quantization error * Fix imports Move C3 from models.experimental to models.common * implement C3() and SiLU() * Fix reshape dim to support dynamic batching * Add epsilon argument in tf_BN, which is different between TF and PT * Set stride to None if not using PyTorch, and do not warmup without PyTorch * Add list support in check_img_size() * Add list input support in detect.py * sys.path.append('./') to run from yolov5/ * Add int8 quantization support for TensorFlow 2.5 * Add get_coco128.sh * Remove --no-tfl-detect in models/tf.py (Use tf-android-tfl-detect branch for EdgeTPU) * Update requirements.txt * Replace torch.load() with attempt_load() * Update requirements.txt * Add --tf-raw-resize to set half_pixel_centers=False * Add --agnostic-nms for TF class-agnostic NMS * Cleanup after merge * Cleanup2 after merge * Cleanup3 after merge * Add tf.py docstring with credit and usage * pb saved_model and tflite use only one model in detect.py * Add use cases in docstring of tf.py * Remove redundant `stride` definition * Remove keras direct import * Fix `check_requirements(('tensorflow>=2.4.1',))` Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2021-08-17 19:18:16 +08:00
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.
Args:
opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.
Returns:
None
Note:
This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified
options. Refer to the usage guide and examples for more information about different sources and formats at:
https://github.com/ultralytics/ultralytics
Example usage:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)