yolov5/data/VOC.yaml

99 lines
3.4 KiB
YAML
Raw Normal View History

Update header line in Python files (#13072) * Add license line to .github/ISSUE_TEMPLATE/bug-report.yml * Add license line to .github/ISSUE_TEMPLATE/config.yml * Add license line to .github/ISSUE_TEMPLATE/feature-request.yml * Add license line to .github/ISSUE_TEMPLATE/question.yml * Add license line to .github/dependabot.yml * Add license line to .github/workflows/ci-testing.yml * Add license line to .github/workflows/cla.yml * Add license line to .github/workflows/codeql-analysis.yml * Add license line to .github/workflows/docker.yml * Add license line to .github/workflows/format.yml * Add license line to .github/workflows/greetings.yml * Add license line to .github/workflows/links.yml * Add license line to .github/workflows/merge-main-into-prs.yml * Add license line to .github/workflows/stale.yml * Add license line to benchmarks.py * Add license line to classify/predict.py * Add license line to classify/train.py * Add license line to classify/val.py * Add license line to data/Argoverse.yaml * Add license line to data/GlobalWheat2020.yaml * Add license line to data/ImageNet.yaml * Add license line to data/ImageNet10.yaml * Add license line to data/ImageNet100.yaml * Add license line to data/ImageNet1000.yaml * Add license line to data/Objects365.yaml * Add license line to data/SKU-110K.yaml * Add license line to data/VOC.yaml * Add license line to data/VisDrone.yaml * Add license line to data/coco.yaml * Add license line to data/coco128-seg.yaml * Add license line to data/coco128.yaml * Add license line to data/hyps/hyp.Objects365.yaml * Add license line to data/hyps/hyp.VOC.yaml * Add license line to data/hyps/hyp.no-augmentation.yaml * Add license line to data/hyps/hyp.scratch-high.yaml * Add license line to data/hyps/hyp.scratch-low.yaml * Add license line to data/hyps/hyp.scratch-med.yaml * Add license line to data/xView.yaml * Add license line to detect.py * Add license line to export.py * Add license line to hubconf.py * Add license line to models/common.py * Add license line to models/experimental.py * Add license line to models/hub/anchors.yaml * Add license line to models/hub/yolov3-spp.yaml * Add license line to models/hub/yolov3-tiny.yaml * Add license line to models/hub/yolov3.yaml * Add license line to models/hub/yolov5-bifpn.yaml * Add license line to models/hub/yolov5-fpn.yaml * Add license line to models/hub/yolov5-p2.yaml * Add license line to models/hub/yolov5-p34.yaml * Add license line to models/hub/yolov5-p6.yaml * Add license line to models/hub/yolov5-p7.yaml * Add license line to models/hub/yolov5-panet.yaml * Add license line to models/hub/yolov5l6.yaml * Add license line to models/hub/yolov5m6.yaml * Add license line to models/hub/yolov5n6.yaml * Add license line to models/hub/yolov5s-LeakyReLU.yaml * Add license line to models/hub/yolov5s-ghost.yaml * Add license line to models/hub/yolov5s-transformer.yaml * Add license line to models/hub/yolov5s6.yaml * Add license line to models/hub/yolov5x6.yaml * Add license line to models/segment/yolov5l-seg.yaml * Add license line to models/segment/yolov5m-seg.yaml * Add license line to models/segment/yolov5n-seg.yaml * Add license line to models/segment/yolov5s-seg.yaml * Add license line to models/segment/yolov5x-seg.yaml * Add license line to models/tf.py * Add license line to models/yolo.py * Add license line to models/yolov5l.yaml * Add license line to models/yolov5m.yaml * Add license line to models/yolov5n.yaml * Add license line to models/yolov5s.yaml * Add license line to models/yolov5x.yaml * Add license line to pyproject.toml * Add license line to segment/predict.py * Add license line to segment/train.py * Add license line to segment/val.py * Add license line to train.py * Add license line to utils/__init__.py * Add license line to utils/activations.py * Add license line to utils/augmentations.py * Add license line to utils/autoanchor.py * Add license line to utils/autobatch.py * Add license line to utils/aws/resume.py * Add license line to utils/callbacks.py * Add license line to utils/dataloaders.py * Add license line to utils/downloads.py * Add license line to utils/flask_rest_api/example_request.py * Add license line to utils/flask_rest_api/restapi.py * Add license line to utils/general.py * Add license line to utils/google_app_engine/app.yaml * Add license line to utils/loggers/__init__.py * Add license line to utils/loggers/clearml/clearml_utils.py * Add license line to utils/loggers/clearml/hpo.py * Add license line to utils/loggers/comet/__init__.py * Add license line to utils/loggers/comet/comet_utils.py * Add license line to utils/loggers/comet/hpo.py * Add license line to utils/loggers/wandb/wandb_utils.py * Add license line to utils/loss.py * Add license line to utils/metrics.py * Add license line to utils/plots.py * Add license line to utils/segment/augmentations.py * Add license line to utils/segment/dataloaders.py * Add license line to utils/segment/general.py * Add license line to utils/segment/loss.py * Add license line to utils/segment/metrics.py * Add license line to utils/segment/plots.py * Add license line to utils/torch_utils.py * Add license line to utils/triton.py * Add license line to val.py * Auto-format by https://ultralytics.com/actions * Update ImageNet1000.yaml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Auto-format by https://ultralytics.com/actions --------- Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2024-06-09 04:29:29 +08:00
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
2021-12-19 22:19:04 +08:00
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
2021-07-28 05:23:41 +08:00
# Example usage: python train.py --data VOC.yaml
2021-07-26 20:23:43 +08:00
# parent
# ├── yolov5
# └── datasets
2022-04-05 21:14:54 +08:00
# └── VOC ← downloads here (2.8 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VOC
train: # train images (relative to 'path') 16551 images
- images/train2012
- images/train2007
- images/val2012
- images/val2007
val: # val images (relative to 'path') 4952 images
- images/test2007
test: # test images (optional)
- images/test2007
# Classes
names:
0: aeroplane
1: bicycle
2: bird
3: boat
4: bottle
5: bus
6: car
7: cat
8: chair
9: cow
10: diningtable
11: dog
12: horse
13: motorbike
14: person
15: pottedplant
16: sheep
17: sofa
18: train
19: tvmonitor
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import xml.etree.ElementTree as ET
2022-04-27 06:00:01 +08:00
from tqdm import tqdm
from utils.general import download, Path
def convert_label(path, lb_path, year, image_id):
def convert_box(size, box):
dw, dh = 1. / size[0], 1. / size[1]
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
out_file = open(lb_path, 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
names = list(yaml['names'].values()) # names list
for obj in root.iter('object'):
cls = obj.find('name').text
if cls in names and int(obj.find('difficult').text) != 1:
xmlbox = obj.find('bndbox')
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
cls_id = names.index(cls) # class id
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
# Download
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
2022-05-31 18:36:20 +08:00
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
# Convert
2022-05-31 18:36:20 +08:00
path = dir / 'images/VOCdevkit'
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
imgs_path = dir / 'images' / f'{image_set}{year}'
lbs_path = dir / 'labels' / f'{image_set}{year}'
imgs_path.mkdir(exist_ok=True, parents=True)
lbs_path.mkdir(exist_ok=True, parents=True)
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
image_ids = f.read().strip().split()
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
f.rename(imgs_path / f.name) # move image
convert_label(path, lb_path, year, id) # convert labels to YOLO format