mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Fix Logging (#719)
* Add logging setup * Fix fusing layers message * Fix logging does not have end * Add logging * Change logging to use logger * Update yolo.py I tried this in a cloned branch, and everything seems to work fine * Update yolo.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
a925f283a7
commit
0892c44bc4
@ -13,7 +13,8 @@ from numpy import random
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import LoadStreams, LoadImages
|
||||
from utils.general import (
|
||||
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)
|
||||
check_img_size, non_max_suppression, apply_classifier, scale_coords,
|
||||
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
|
||||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||
|
||||
|
||||
@ -23,6 +24,7 @@ def detect(save_img=False):
|
||||
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
||||
|
||||
# Initialize
|
||||
set_logging()
|
||||
device = select_device(opt.device)
|
||||
if os.path.exists(out):
|
||||
shutil.rmtree(out) # delete output folder
|
||||
|
@ -9,6 +9,7 @@ import argparse
|
||||
import torch
|
||||
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.general import set_logging
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -18,6 +19,7 @@ if __name__ == '__main__':
|
||||
opt = parser.parse_args()
|
||||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||
print(opt)
|
||||
set_logging()
|
||||
|
||||
# Input
|
||||
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
||||
|
@ -9,7 +9,7 @@ import torch.nn as nn
|
||||
|
||||
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat
|
||||
from models.experimental import MixConv2d, CrossConv, C3
|
||||
from utils.general import check_anchor_order, make_divisible, check_file
|
||||
from utils.general import check_anchor_order, make_divisible, check_file, set_logging
|
||||
from utils.torch_utils import (
|
||||
time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
|
||||
|
||||
@ -156,7 +156,7 @@ class Model(nn.Module):
|
||||
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
||||
|
||||
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||
print('Fusing layers... ', end='')
|
||||
print('Fusing layers... ')
|
||||
for m in self.model.modules():
|
||||
if type(m) is Conv:
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
||||
@ -239,6 +239,7 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
opt = parser.parse_args()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
set_logging()
|
||||
device = select_device(opt.device)
|
||||
|
||||
# Create model
|
||||
|
5
test.py
5
test.py
@ -13,8 +13,8 @@ from tqdm import tqdm
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import (
|
||||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression,
|
||||
scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class)
|
||||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
|
||||
xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
|
||||
from utils.torch_utils import select_device, time_synchronized
|
||||
|
||||
|
||||
@ -39,6 +39,7 @@ def test(data,
|
||||
device = next(model.parameters()).device # get model device
|
||||
|
||||
else: # called directly
|
||||
set_logging()
|
||||
device = select_device(opt.device, batch_size=batch_size)
|
||||
merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
|
||||
if save_txt:
|
||||
|
4
train.py
4
train.py
@ -71,7 +71,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||||
model.load_state_dict(state_dict, strict=False) # load
|
||||
logging.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||
else:
|
||||
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
||||
|
||||
@ -234,7 +234,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||
if rank != -1:
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(dataloader)
|
||||
logging.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||
if rank in [-1, 0]:
|
||||
pbar = tqdm(pbar, total=nb) # progress bar
|
||||
optimizer.zero_grad()
|
||||
|
Loading…
x
Reference in New Issue
Block a user