Update script headers (#4163)
* Update download script headers * cleanup * bug fix attempt * bug fix attempt2 * bug fix attempt3 * cleanuppull/4174/head
parent
f8e11483df
commit
0ad6301c96
|
@ -1,7 +1,12 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
|
||||||
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
||||||
# Usage:
|
# YOLOv5 🚀 example usage: bash path/to/download_weights.sh
|
||||||
# $ bash path/to/download_weights.sh
|
# parent
|
||||||
|
# └── yolov5
|
||||||
|
# ├── yolov5s.pt ← downloads here
|
||||||
|
# ├── yolov5m.pt
|
||||||
|
# └── ...
|
||||||
|
|
||||||
python - <<EOF
|
python - <<EOF
|
||||||
from utils.google_utils import attempt_download
|
from utils.google_utils import attempt_download
|
||||||
|
|
|
@ -1,11 +1,11 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# COCO 2017 dataset http://cocodataset.org
|
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
|
||||||
# Download command: bash data/scripts/get_coco.sh
|
# Download COCO 2017 dataset http://cocodataset.org
|
||||||
# Train command: python train.py --data coco.yaml
|
# YOLOv5 🚀 example usage: bash data/scripts/get_coco.sh
|
||||||
# Default dataset location is next to YOLOv5:
|
# parent
|
||||||
# /parent_folder
|
# ├── yolov5
|
||||||
# /coco
|
# └── datasets
|
||||||
# /yolov5
|
# └── coco ← downloads here
|
||||||
|
|
||||||
# Download/unzip labels
|
# Download/unzip labels
|
||||||
d='../datasets' # unzip directory
|
d='../datasets' # unzip directory
|
||||||
|
|
|
@ -1,14 +1,14 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128
|
# Copyright Ultralytics https://ultralytics.com, licensed under GNU GPL v3.0
|
||||||
# Download command: bash data/scripts/get_coco128.sh
|
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
||||||
# Train command: python train.py --data coco128.yaml
|
# YOLOv5 🚀 example usage: bash data/scripts/get_coco128.sh
|
||||||
# Default dataset location is next to /yolov5:
|
# parent
|
||||||
# /parent_folder
|
# ├── yolov5
|
||||||
# /coco128
|
# └── datasets
|
||||||
# /yolov5
|
# └── coco128 ← downloads here
|
||||||
|
|
||||||
# Download/unzip images and labels
|
# Download/unzip images and labels
|
||||||
d='../' # unzip directory
|
d='../datasets' # unzip directory
|
||||||
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
||||||
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB
|
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB
|
||||||
echo 'Downloading' $url$f ' ...'
|
echo 'Downloading' $url$f ' ...'
|
||||||
|
|
5
train.py
5
train.py
|
@ -78,8 +78,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||||
plots = not evolve # create plots
|
plots = not evolve # create plots
|
||||||
cuda = device.type != 'cpu'
|
cuda = device.type != 'cpu'
|
||||||
init_seeds(1 + RANK)
|
init_seeds(1 + RANK)
|
||||||
with open(data) as f:
|
with open(data, encoding='ascii', errors='ignore') as f:
|
||||||
data_dict = yaml.safe_load(f) # data dict
|
data_dict = yaml.safe_load(f)
|
||||||
|
|
||||||
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
||||||
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||||
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
|
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
|
||||||
|
|
|
@ -60,11 +60,11 @@ def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
print('') # newline
|
print('') # newline
|
||||||
|
|
||||||
|
|
||||||
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
""" Creates kmeans-evolved anchors from training dataset
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
Arguments:
|
Arguments:
|
||||||
path: path to dataset *.yaml, or a loaded dataset
|
dataset: path to data.yaml, or a loaded dataset
|
||||||
n: number of anchors
|
n: number of anchors
|
||||||
img_size: image size used for training
|
img_size: image size used for training
|
||||||
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
@ -103,13 +103,11 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10
|
||||||
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||||
return k
|
return k
|
||||||
|
|
||||||
if isinstance(path, str): # *.yaml file
|
if isinstance(dataset, str): # *.yaml file
|
||||||
with open(path) as f:
|
with open(dataset, encoding='ascii', errors='ignore') as f:
|
||||||
data_dict = yaml.safe_load(f) # model dict
|
data_dict = yaml.safe_load(f) # model dict
|
||||||
from utils.datasets import LoadImagesAndLabels
|
from utils.datasets import LoadImagesAndLabels
|
||||||
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
else:
|
|
||||||
dataset = path # dataset
|
|
||||||
|
|
||||||
# Get label wh
|
# Get label wh
|
||||||
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
|
|
@ -909,7 +909,7 @@ def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False):
|
||||||
return False, None, path
|
return False, None, path
|
||||||
|
|
||||||
zipped, data_dir, yaml_path = unzip(Path(path))
|
zipped, data_dir, yaml_path = unzip(Path(path))
|
||||||
with open(check_file(yaml_path)) as f:
|
with open(check_file(yaml_path), encoding='ascii', errors='ignore') as f:
|
||||||
data = yaml.safe_load(f) # data dict
|
data = yaml.safe_load(f) # data dict
|
||||||
if zipped:
|
if zipped:
|
||||||
data['path'] = data_dir # TODO: should this be dir.resolve()?
|
data['path'] = data_dir # TODO: should this be dir.resolve()?
|
||||||
|
|
|
@ -8,9 +8,9 @@ WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_artifact(opt):
|
def create_dataset_artifact(opt):
|
||||||
with open(opt.data) as f:
|
with open(opt.data, encoding='ascii', errors='ignore') as f:
|
||||||
data = yaml.safe_load(f) # data dict
|
data = yaml.safe_load(f) # data dict
|
||||||
logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
|
logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation') # TODO: return value unused
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -62,7 +62,7 @@ def check_wandb_resume(opt):
|
||||||
|
|
||||||
|
|
||||||
def process_wandb_config_ddp_mode(opt):
|
def process_wandb_config_ddp_mode(opt):
|
||||||
with open(check_file(opt.data)) as f:
|
with open(check_file(opt.data), encoding='ascii', errors='ignore') as f:
|
||||||
data_dict = yaml.safe_load(f) # data dict
|
data_dict = yaml.safe_load(f) # data dict
|
||||||
train_dir, val_dir = None, None
|
train_dir, val_dir = None, None
|
||||||
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
@ -150,7 +150,7 @@ class WandbLogger():
|
||||||
opt.single_cls,
|
opt.single_cls,
|
||||||
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
||||||
print("Created dataset config file ", config_path)
|
print("Created dataset config file ", config_path)
|
||||||
with open(config_path) as f:
|
with open(config_path, encoding='ascii', errors='ignore') as f:
|
||||||
wandb_data_dict = yaml.safe_load(f)
|
wandb_data_dict = yaml.safe_load(f)
|
||||||
return wandb_data_dict
|
return wandb_data_dict
|
||||||
|
|
||||||
|
@ -226,7 +226,7 @@ class WandbLogger():
|
||||||
print("Saving model artifact on epoch ", epoch + 1)
|
print("Saving model artifact on epoch ", epoch + 1)
|
||||||
|
|
||||||
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||||
with open(data_file) as f:
|
with open(data_file, encoding='ascii', errors='ignore') as f:
|
||||||
data = yaml.safe_load(f) # data dict
|
data = yaml.safe_load(f) # data dict
|
||||||
check_dataset(data)
|
check_dataset(data)
|
||||||
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
||||||
|
|
2
val.py
2
val.py
|
@ -123,7 +123,7 @@ def run(data,
|
||||||
# model = nn.DataParallel(model)
|
# model = nn.DataParallel(model)
|
||||||
|
|
||||||
# Data
|
# Data
|
||||||
with open(data) as f:
|
with open(data, encoding='ascii', errors='ignore') as f:
|
||||||
data = yaml.safe_load(f)
|
data = yaml.safe_load(f)
|
||||||
check_dataset(data) # check
|
check_dataset(data) # check
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue