Generalized regression criterion renaming (#1120)
parent
10c85bf4eb
commit
0ada058f63
|
@ -15,7 +15,7 @@ weight_decay: 0.00036
|
||||||
warmup_epochs: 2.0
|
warmup_epochs: 2.0
|
||||||
warmup_momentum: 0.5
|
warmup_momentum: 0.5
|
||||||
warmup_bias_lr: 0.05
|
warmup_bias_lr: 0.05
|
||||||
giou: 0.0296
|
box: 0.0296
|
||||||
cls: 0.243
|
cls: 0.243
|
||||||
cls_pw: 0.631
|
cls_pw: 0.631
|
||||||
obj: 0.301
|
obj: 0.301
|
||||||
|
|
|
@ -10,7 +10,7 @@ weight_decay: 0.0005 # optimizer weight decay 5e-4
|
||||||
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
||||||
warmup_momentum: 0.8 # warmup initial momentum
|
warmup_momentum: 0.8 # warmup initial momentum
|
||||||
warmup_bias_lr: 0.1 # warmup initial bias lr
|
warmup_bias_lr: 0.1 # warmup initial bias lr
|
||||||
giou: 0.05 # box loss gain
|
box: 0.05 # box loss gain
|
||||||
cls: 0.5 # cls loss gain
|
cls: 0.5 # cls loss gain
|
||||||
cls_pw: 1.0 # cls BCELoss positive_weight
|
cls_pw: 1.0 # cls BCELoss positive_weight
|
||||||
obj: 1.0 # obj loss gain (scale with pixels)
|
obj: 1.0 # obj loss gain (scale with pixels)
|
||||||
|
|
|
@ -113,7 +113,7 @@ def test(data,
|
||||||
|
|
||||||
# Compute loss
|
# Compute loss
|
||||||
if training: # if model has loss hyperparameters
|
if training: # if model has loss hyperparameters
|
||||||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
||||||
|
|
||||||
# Run NMS
|
# Run NMS
|
||||||
t = time_synchronized()
|
t = time_synchronized()
|
||||||
|
|
2
test.py
2
test.py
|
@ -106,7 +106,7 @@ def test(data,
|
||||||
|
|
||||||
# Compute loss
|
# Compute loss
|
||||||
if training: # if model has loss hyperparameters
|
if training: # if model has loss hyperparameters
|
||||||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
||||||
|
|
||||||
# Run NMS
|
# Run NMS
|
||||||
t = time_synchronized()
|
t = time_synchronized()
|
||||||
|
|
18
train.py
18
train.py
|
@ -195,7 +195,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||||||
model.nc = nc # attach number of classes to model
|
model.nc = nc # attach number of classes to model
|
||||||
model.hyp = hyp # attach hyperparameters to model
|
model.hyp = hyp # attach hyperparameters to model
|
||||||
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
|
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
||||||
model.names = names
|
model.names = names
|
||||||
|
|
||||||
|
@ -204,7 +204,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||||
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||||
maps = np.zeros(nc) # mAP per class
|
maps = np.zeros(nc) # mAP per class
|
||||||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
scaler = amp.GradScaler(enabled=cuda)
|
scaler = amp.GradScaler(enabled=cuda)
|
||||||
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
|
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
|
||||||
|
@ -234,7 +234,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
if rank != -1:
|
if rank != -1:
|
||||||
dataloader.sampler.set_epoch(epoch)
|
dataloader.sampler.set_epoch(epoch)
|
||||||
pbar = enumerate(dataloader)
|
pbar = enumerate(dataloader)
|
||||||
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||||
if rank in [-1, 0]:
|
if rank in [-1, 0]:
|
||||||
pbar = tqdm(pbar, total=nb) # progress bar
|
pbar = tqdm(pbar, total=nb) # progress bar
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
@ -245,7 +245,7 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
# Warmup
|
# Warmup
|
||||||
if ni <= nw:
|
if ni <= nw:
|
||||||
xi = [0, nw] # x interp
|
xi = [0, nw] # x interp
|
||||||
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||||||
for j, x in enumerate(optimizer.param_groups):
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
|
@ -319,21 +319,21 @@ def train(hyp, opt, device, tb_writer=None):
|
||||||
|
|
||||||
# Write
|
# Write
|
||||||
with open(results_file, 'a') as f:
|
with open(results_file, 'a') as f:
|
||||||
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
if len(opt.name) and opt.bucket:
|
if len(opt.name) and opt.bucket:
|
||||||
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||||
|
|
||||||
# Tensorboard
|
# Tensorboard
|
||||||
if tb_writer:
|
if tb_writer:
|
||||||
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||||
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||||
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||||
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||||||
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||||||
tb_writer.add_scalar(tag, x, epoch)
|
tb_writer.add_scalar(tag, x, epoch)
|
||||||
|
|
||||||
# Update best mAP
|
# Update best mAP
|
||||||
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||||
if fi > best_fitness:
|
if fi > best_fitness:
|
||||||
best_fitness = fi
|
best_fitness = fi
|
||||||
|
|
||||||
|
@ -463,7 +463,7 @@ if __name__ == '__main__':
|
||||||
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||||
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||||
'giou': (1, 0.02, 0.2), # GIoU loss gain
|
'box': (1, 0.02, 0.2), # box loss gain
|
||||||
'cls': (1, 0.2, 4.0), # cls loss gain
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||||
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||||
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||||
|
|
|
@ -509,11 +509,11 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||||
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
||||||
giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target)
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||||
lbox += (1.0 - giou).mean() # giou loss
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
# Objectness
|
# Objectness
|
||||||
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
|
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||||
|
|
||||||
# Classification
|
# Classification
|
||||||
if model.nc > 1: # cls loss (only if multiple classes)
|
if model.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
@ -528,7 +528,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
||||||
|
|
||||||
s = 3 / np # output count scaling
|
s = 3 / np # output count scaling
|
||||||
lbox *= h['giou'] * s
|
lbox *= h['box'] * s
|
||||||
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
||||||
lcls *= h['cls'] * s
|
lcls *= h['cls'] * s
|
||||||
bs = tobj.shape[0] # batch size
|
bs = tobj.shape[0] # batch size
|
||||||
|
@ -1234,7 +1234,7 @@ def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general im
|
||||||
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
|
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
|
||||||
# Plot training 'results*.txt', overlaying train and val losses
|
# Plot training 'results*.txt', overlaying train and val losses
|
||||||
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||||
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||||
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
n = results.shape[1] # number of rows
|
n = results.shape[1] # number of rows
|
||||||
|
@ -1254,13 +1254,13 @@ def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_
|
||||||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||||
|
|
||||||
|
|
||||||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(),
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||||
save_dir=''): # from utils.general import *; plot_results()
|
# from utils.general import *; plot_results()
|
||||||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
||||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||||||
ax = ax.ravel()
|
ax = ax.ravel()
|
||||||
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
|
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||||
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||||
if bucket:
|
if bucket:
|
||||||
# os.system('rm -rf storage.googleapis.com')
|
# os.system('rm -rf storage.googleapis.com')
|
||||||
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||||
|
|
Loading…
Reference in New Issue