Generalized regression criterion renaming (#1120)

pull/1132/head
Glenn Jocher 2020-10-11 17:25:17 +02:00 committed by GitHub
parent 10c85bf4eb
commit 0ada058f63
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 22 additions and 22 deletions

View File

@ -15,7 +15,7 @@ weight_decay: 0.00036
warmup_epochs: 2.0 warmup_epochs: 2.0
warmup_momentum: 0.5 warmup_momentum: 0.5
warmup_bias_lr: 0.05 warmup_bias_lr: 0.05
giou: 0.0296 box: 0.0296
cls: 0.243 cls: 0.243
cls_pw: 0.631 cls_pw: 0.631
obj: 0.301 obj: 0.301

View File

@ -10,7 +10,7 @@ weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok) warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr warmup_bias_lr: 0.1 # warmup initial bias lr
giou: 0.05 # box loss gain box: 0.05 # box loss gain
cls: 0.5 # cls loss gain cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels) obj: 1.0 # obj loss gain (scale with pixels)

View File

@ -113,7 +113,7 @@ def test(data,
# Compute loss # Compute loss
if training: # if model has loss hyperparameters if training: # if model has loss hyperparameters
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
# Run NMS # Run NMS
t = time_synchronized() t = time_synchronized()

View File

@ -106,7 +106,7 @@ def test(data,
# Compute loss # Compute loss
if training: # if model has loss hyperparameters if training: # if model has loss hyperparameters
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
# Run NMS # Run NMS
t = time_synchronized() t = time_synchronized()

View File

@ -195,7 +195,7 @@ def train(hyp, opt, device, tb_writer=None):
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
model.nc = nc # attach number of classes to model model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou) model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model.names = names model.names = names
@ -204,7 +204,7 @@ def train(hyp, opt, device, tb_writer=None):
nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations) nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
maps = np.zeros(nc) # mAP per class maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification' results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda) scaler = amp.GradScaler(enabled=cuda)
logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n' logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
@ -234,7 +234,7 @@ def train(hyp, opt, device, tb_writer=None):
if rank != -1: if rank != -1:
dataloader.sampler.set_epoch(epoch) dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader) pbar = enumerate(dataloader)
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size')) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
if rank in [-1, 0]: if rank in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad() optimizer.zero_grad()
@ -245,7 +245,7 @@ def train(hyp, opt, device, tb_writer=None):
# Warmup # Warmup
if ni <= nw: if ni <= nw:
xi = [0, nw] # x interp xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou) # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()) accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
for j, x in enumerate(optimizer.param_groups): for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
@ -319,21 +319,21 @@ def train(hyp, opt, device, tb_writer=None):
# Write # Write
with open(results_file, 'a') as f: with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls) f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
if len(opt.name) and opt.bucket: if len(opt.name) and opt.bucket:
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name)) os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
# Tensorboard # Tensorboard
if tb_writer: if tb_writer:
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss', # train loss tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params 'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
tb_writer.add_scalar(tag, x, epoch) tb_writer.add_scalar(tag, x, epoch)
# Update best mAP # Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1] fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness: if fi > best_fitness:
best_fitness = fi best_fitness = fi
@ -463,7 +463,7 @@ if __name__ == '__main__':
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'giou': (1, 0.02, 0.2), # GIoU loss gain 'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain 'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)

View File

@ -509,11 +509,11 @@ def compute_loss(p, targets, model): # predictions, targets, model
pxy = ps[:, :2].sigmoid() * 2. - 0.5 pxy = ps[:, :2].sigmoid() * 2. - 0.5
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target) iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
lbox += (1.0 - giou).mean() # giou loss lbox += (1.0 - iou).mean() # iou loss
# Objectness # Objectness
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
# Classification # Classification
if model.nc > 1: # cls loss (only if multiple classes) if model.nc > 1: # cls loss (only if multiple classes)
@ -528,7 +528,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
s = 3 / np # output count scaling s = 3 / np # output count scaling
lbox *= h['giou'] * s lbox *= h['box'] * s
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.) lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
lcls *= h['cls'] * s lcls *= h['cls'] * s
bs = tobj.shape[0] # batch size bs = tobj.shape[0] # batch size
@ -1234,7 +1234,7 @@ def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general im
def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay() def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay()
# Plot training 'results*.txt', overlaying train and val losses # Plot training 'results*.txt', overlaying train and val losses
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
n = results.shape[1] # number of rows n = results.shape[1] # number of rows
@ -1254,13 +1254,13 @@ def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_
fig.savefig(f.replace('.txt', '.png'), dpi=200) fig.savefig(f.replace('.txt', '.png'), dpi=200)
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
save_dir=''): # from utils.general import *; plot_results() # from utils.general import *; plot_results()
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
fig, ax = plt.subplots(2, 5, figsize=(12, 6)) fig, ax = plt.subplots(2, 5, figsize=(12, 6))
ax = ax.ravel() ax = ax.ravel()
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
if bucket: if bucket:
# os.system('rm -rf storage.googleapis.com') # os.system('rm -rf storage.googleapis.com')
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]