Rename 'labels' to 'instances' (#9066)
* Rename labels to instances * Rename labels to instances * align valpull/9070/head
parent
87e8deadd5
commit
0b8639a40a
4
train.py
4
train.py
|
@ -271,7 +271,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
if RANK != -1:
|
||||
train_loader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(train_loader)
|
||||
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
|
||||
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
|
||||
if RANK in {-1, 0}:
|
||||
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
||||
optimizer.zero_grad()
|
||||
|
@ -326,7 +326,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
if RANK in {-1, 0}:
|
||||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
||||
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
|
||||
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
|
||||
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
||||
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots)
|
||||
if callbacks.stop_training:
|
||||
|
|
4
val.py
4
val.py
|
@ -186,7 +186,7 @@ def run(
|
|||
if isinstance(names, (list, tuple)): # old format
|
||||
names = dict(enumerate(names))
|
||||
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
||||
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
||||
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
||||
dt, p, r, f1, mp, mr, map50, map = (Profile(), Profile(), Profile()), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
||||
loss = torch.zeros(3, device=device)
|
||||
jdict, stats, ap, ap_class = [], [], [], []
|
||||
|
@ -270,7 +270,7 @@ def run(
|
|||
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
||||
|
||||
# Print results
|
||||
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
||||
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
||||
if nt.sum() == 0:
|
||||
LOGGER.warning(f'WARNING: no labels found in {task} set, can not compute metrics without labels ⚠️')
|
||||
|
|
Loading…
Reference in New Issue