export.py return exported files/dirs (#6343)

* `export.py` return exported files/dirs

* Path to str
This commit is contained in:
Glenn Jocher 2022-01-18 15:18:23 -10:00 committed by GitHub
parent e2e95b2d8e
commit 0cf932bf63
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -434,16 +434,17 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")
# Exports
f = [''] * 10 # exported filenames
if 'torchscript' in include:
f = export_torchscript(model, im, file, optimize)
f[0] = export_torchscript(model, im, file, optimize)
if 'engine' in include: # TensorRT required before ONNX
f = export_engine(model, im, file, train, half, simplify, workspace, verbose)
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX
f = export_onnx(model, im, file, opset, train, dynamic, simplify)
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
if 'openvino' in include:
f = export_openvino(model, im, file)
f[3] = export_openvino(model, im, file)
if 'coreml' in include:
_, f = export_coreml(model, im, file)
_, f[4] = export_coreml(model, im, file)
# TensorFlow Exports
if any(tf_exports):
@ -451,25 +452,27 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
model, f = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model
model, f[5] = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model
if pb or tfjs: # pb prerequisite to tfjs
f = export_pb(model, im, file)
f[6] = export_pb(model, im, file)
if tflite or edgetpu:
f = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
if edgetpu:
f = export_edgetpu(model, im, file)
f[8] = export_edgetpu(model, im, file)
if tfjs:
f = export_tfjs(model, im, file)
f[9] = export_tfjs(model, im, file)
# Finish
f = [str(x) for x in f if x] # filter out '' and None
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nVisualize with https://netron.app"
f"\nDetect with `python detect.py --weights {f}`"
f" or `model = torch.hub.load('ultralytics/yolov5', 'custom', '{f}')"
f"\nValidate with `python val.py --weights {f}`")
f"\nDetect with `python detect.py --weights {f[-1]}`"
f" or `model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
f"\nValidate with `python val.py --weights {f[-1]}`")
return f # return list of exported files/dirs
def parse_opt():