feat: enable timing cache for engine export

pull/13386/head
imyhxy 2024-10-24 14:49:39 +08:00
parent 8ee1670d57
commit 10bf52d087
1 changed files with 18 additions and 3 deletions

View File

@ -593,7 +593,8 @@ def export_coreml(model, im, file, int8, half, nms, mlmodel, prefix=colorstr("Co
@try_export
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, cache="",
prefix=colorstr("TensorRT:")):
"""
Export a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
@ -606,6 +607,7 @@ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose
simplify (bool): Set to True to simplify the model during export.
workspace (int): Workspace size in GB (default is 4).
verbose (bool): Set to True for verbose logging output.
cache (str): Path to save the TensorRT timing cache.
prefix (str): Log message prefix.
Returns:
@ -660,6 +662,11 @@ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)
else: # TensorRT versions 7, 8
config.max_workspace_size = workspace * 1 << 30
if cache: # enable timing cache
Path(cache).parent.mkdir(parents=True, exist_ok=True)
buf = Path(cache).read_bytes() if Path(cache).exists() else b""
timing_cache = config.create_timing_cache(buf)
config.set_timing_cache(timing_cache, ignore_mismatch=True)
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
@ -688,6 +695,9 @@ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose
build = builder.build_serialized_network if is_trt10 else builder.build_engine
with build(network, config) as engine, open(f, "wb") as t:
t.write(engine if is_trt10 else engine.serialize())
if cache: # save timing cache
with open(cache, "wb") as c:
c.write(config.get_timing_cache().serialize())
return f, None
@ -1277,6 +1287,7 @@ def run(
int8=False, # CoreML/TF INT8 quantization
per_tensor=False, # TF per tensor quantization
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
cache="", # TensorRT: timing cache path
simplify=False, # ONNX: simplify model
mlmodel=False, # CoreML: Export in *.mlmodel format
opset=12, # ONNX: opset version
@ -1306,6 +1317,7 @@ def run(
int8 (bool): Apply INT8 quantization for CoreML or TensorFlow models. Default is False.
per_tensor (bool): Apply per tensor quantization for TensorFlow models. Default is False.
dynamic (bool): Enable dynamic axes for ONNX, TensorFlow, or TensorRT exports. Default is False.
cache (str): TensorRT timing cache path. Default is an empty string.
simplify (bool): Simplify the ONNX model during export. Default is False.
opset (int): ONNX opset version. Default is 12.
verbose (bool): Enable verbose logging for TensorRT export. Default is False.
@ -1341,6 +1353,7 @@ def run(
int8=False,
per_tensor=False,
dynamic=False,
cache="",
simplify=False,
opset=12,
verbose=False,
@ -1378,7 +1391,8 @@ def run(
# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
ch = next(model.parameters()).size(1) # require input image channels
im = torch.zeros(batch_size, ch, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
# Update model
model.eval()
@ -1402,7 +1416,7 @@ def run(
if jit: # TorchScript
f[0], _ = export_torchscript(model, im, file, optimize)
if engine: # TensorRT required before ONNX
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose, cache)
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
if xml: # OpenVINO
@ -1497,6 +1511,7 @@ def parse_opt(known=False):
parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
parser.add_argument("--cache", type=str, default="", help="TensorRT: timing cache file path")
parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
parser.add_argument("--mlmodel", action="store_true", help="CoreML: Export in *.mlmodel format")
parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")