Automatic README translation to Simplified Chinese (#10445)
* Create translate-readme.yml @AyushExel @pderrenger @Laughing-q adding README translation action since we are unable to manually maintain our Chinese-translated README Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Double hyperlinks Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Delete README_cn.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Create README.zh-CN.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README.md Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update .pre-commit-config.yaml Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/10457/head^2
parent
de812396fe
commit
1607aec431
|
@ -1,344 +0,0 @@
|
|||
<div align="center">
|
||||
<p>
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a>
|
||||
</p>
|
||||
|
||||
[English](../README.md) | 简体中文
|
||||
<br>
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
<br>
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
<p>
|
||||
YOLOv5🚀是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了<a href="https://ultralytics.com">Ultralytics</a>对未来视觉AI方法的公开研究,其中包含了在数千小时的研究和开发中所获得的经验和最佳实践。
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
## <div align="center">文件</div>
|
||||
|
||||
请参阅[YOLOv5 Docs](https://docs.ultralytics.com),了解有关训练、测试和部署的完整文件。
|
||||
|
||||
## <div align="center">快速开始案例</div>
|
||||
|
||||
<details open>
|
||||
<summary>安装</summary>
|
||||
|
||||
在[**Python>=3.7.0**](https://www.python.org/) 的环境中克隆版本仓并安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt),包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/)。
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5 # 克隆
|
||||
cd yolov5
|
||||
pip install -r requirements.txt # 安装
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details open>
|
||||
<summary>推理</summary>
|
||||
|
||||
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从最新YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases)下载。
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# 模型
|
||||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
|
||||
|
||||
# 图像
|
||||
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
||||
|
||||
# 推理
|
||||
results = model(img)
|
||||
|
||||
# 结果
|
||||
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>用 detect.py 进行推理</summary>
|
||||
|
||||
`detect.py` 在各种数据源上运行推理, 其会从最新的 YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中自动下载 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 并将检测结果保存到 `runs/detect` 目录。
|
||||
|
||||
```bash
|
||||
python detect.py --source 0 # 网络摄像头
|
||||
img.jpg # 图像
|
||||
vid.mp4 # 视频
|
||||
path/ # 文件夹
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP 流
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>训练</summary>
|
||||
|
||||
以下指令再现了 YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
||||
数据集结果. [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data) 自动从最新的YOLOv5 [版本](https://github.com/ultralytics/yolov5/releases) 中下载。YOLOv5n/s/m/l/x的训练时间在V100 GPU上是 1/2/4/6/8天(多GPU倍速). 尽可能使用最大的 `--batch-size`, 或通过 `--batch-size -1` 来实现 YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092). 批量大小显示为 V100-16GB。
|
||||
|
||||
```bash
|
||||
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||
yolov5s 64
|
||||
yolov5m 40
|
||||
yolov5l 24
|
||||
yolov5x 16
|
||||
```
|
||||
|
||||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||
|
||||
</details>
|
||||
|
||||
<details open>
|
||||
<summary>教程</summary>
|
||||
|
||||
- [训练自定义数据集](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 推荐
|
||||
- [获得最佳训练效果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
|
||||
推荐
|
||||
- [多GPU训练](https://github.com/ultralytics/yolov5/issues/475)
|
||||
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 新
|
||||
- [TFLite, ONNX, CoreML, TensorRT 输出](https://github.com/ultralytics/yolov5/issues/251) 🚀
|
||||
- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
||||
- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
|
||||
- [模型剪枝/稀疏性](https://github.com/ultralytics/yolov5/issues/304)
|
||||
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
|
||||
- [带有冻结层的迁移学习](https://github.com/ultralytics/yolov5/issues/1314)
|
||||
- [架构概要](https://github.com/ultralytics/yolov5/issues/6998) 🌟 新
|
||||
- [使用Weights & Biases 记录实验](https://github.com/ultralytics/yolov5/issues/1289)
|
||||
- [Roboflow:数据集,标签和主动学习](https://github.com/ultralytics/yolov5/issues/4975) 🌟 新
|
||||
- [使用ClearML 记录实验](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 新
|
||||
- [Deci 平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 新
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## <div align="center">Integrations</div>
|
||||
|
||||
<br>
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/master/im/integrations-loop.png"></a>
|
||||
<br>
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://roboflow.com/?ref=ultralytics">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://cutt.ly/yolov5-readme-clearml">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-readme-comet">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-deci-platform">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
|Roboflow|ClearML ⭐ NEW|Comet ⭐ NEW|Deci ⭐ NEW|
|
||||
|:-:|:-:|:-:|:-:|
|
||||
|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|
|
||||
|
||||
|
||||
## <div align="center">Ultralytics HUB</div>
|
||||
|
||||
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv5 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now!
|
||||
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/master/im/ultralytics-hub.png"></a>
|
||||
|
||||
|
||||
## <div align="center">为什么选择 YOLOv5</div>
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||
<details>
|
||||
<summary>YOLOv5-P5 640 图像 (点击扩展)</summary>
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
||||
</details>
|
||||
<details>
|
||||
<summary>图片注释 (点击扩展)</summary>
|
||||
|
||||
- **COCO AP val** 表示 mAP@0.5:0.95 在5000张图像的[COCO val2017](http://cocodataset.org)数据集上,在256到1536的不同推理大小上测量的指标。
|
||||
- **GPU Speed** 衡量的是在 [COCO val2017](http://cocodataset.org) 数据集上使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例在批量大小为32时每张图像的平均推理时间。
|
||||
- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) ,批量大小设置为 8。
|
||||
- 复现 mAP 方法: `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||
|
||||
</details>
|
||||
|
||||
### 预训练检查点
|
||||
|
||||
| 模型 | 规模<br><sup>(像素) | mAP<sup>验证<br>0.5:0.95 | mAP<sup>验证<br>0.5 | 速度<br><sup>CPU b1<br>(ms) | 速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数<br><sup>(M) | 浮点运算<br><sup>@640 (B) |
|
||||
|------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|------------------------------|-------------------------------|--------------------------------|--------------------|------------------------|
|
||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
||||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
||||
| | | | | | | | | |
|
||||
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
||||
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
|
||||
<details>
|
||||
<summary>表格注释 (点击扩展)</summary>
|
||||
|
||||
- 所有检查点都以默认设置训练到300个时期. Nano和Small模型用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, 其他模型使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
||||
- **mAP<sup>val</sup>** 值是 [COCO val2017](http://cocodataset.org) 数据集上的单模型单尺度的值。
|
||||
<br>复现方法: `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||
- 使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) 实例对COCO val图像的平均速度。不包括NMS时间(~1 ms/img)
|
||||
<br>复现方法: `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||
- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和比例增强.
|
||||
<br>复现方法: `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## <div align="center">分类 ⭐ 新</div>
|
||||
|
||||
YOLOv5发布的[v6.2版本](https://github.com/ultralytics/yolov5/releases) 支持训练,验证,预测和输出分类模型!这使得训练分类器模型非常简单。点击下面开始尝试!
|
||||
|
||||
<details>
|
||||
<summary>分类检查点 (点击展开)</summary>
|
||||
|
||||
<br>
|
||||
|
||||
我们在ImageNet上使用了4xA100的实例训练YOLOv5-cls分类模型90个epochs,并以相同的默认设置同时训练了ResNet和EfficientNet模型来进行比较。我们将所有的模型导出到ONNX FP32进行CPU速度测试,又导出到TensorRT FP16进行GPU速度测试。最后,为了方便重现,我们在[Google Colab Pro](https://colab.research.google.com/signup)上进行了所有的速度测试。
|
||||
|
||||
| 模型 | 规模<br><sup>(像素) | 准确度<br><sup>第一 | 准确度<br><sup>前五 | 训练<br><sup>90 epochs<br>4xA100 (小时) | 速度<br><sup>ONNX CPU<br>(ms) | 速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | 浮点运算<br><sup>@224 (B) |
|
||||
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
|
||||
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
||||
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
||||
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
||||
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
||||
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
||||
| |
|
||||
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
||||
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
||||
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
||||
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
||||
| |
|
||||
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
||||
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
||||
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
||||
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
||||
|
||||
<details>
|
||||
<summary>表格注释 (点击扩展)</summary>
|
||||
|
||||
- 所有检查点都被SGD优化器训练到90 epochs, `lr0=0.001` 和 `weight_decay=5e-5`, 图像大小为224,全为默认设置。<br>运行数据记录于 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2。
|
||||
- **准确度** 值为[ImageNet-1k](https://www.image-net.org/index.php)数据集上的单模型单尺度。<br>通过`python classify/val.py --data ../datasets/imagenet --img 224`进行复制。
|
||||
- 使用Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM实例得出的100张推理图像的平均**速度**。<br>通过 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`进行复制。
|
||||
- 用`export.py`**导出**到FP32的ONNX和FP16的TensorRT。<br>通过 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`进行复制。
|
||||
</details>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>分类使用实例 (点击展开)</summary>
|
||||
|
||||
### 训练
|
||||
YOLOv5分类训练支持自动下载MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof和ImageNet数据集,并使用`--data` 参数. 打个比方,在MNIST上使用`--data mnist`开始训练。
|
||||
|
||||
```bash
|
||||
# 单GPU
|
||||
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
||||
|
||||
# 多-GPU DDP
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 验证
|
||||
在ImageNet-1k数据集上验证YOLOv5m-cl的准确性:
|
||||
```bash
|
||||
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
||||
```
|
||||
|
||||
### 预测
|
||||
用提前训练好的YOLOv5s-cls.pt去预测bus.jpg:
|
||||
```bash
|
||||
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
|
||||
```
|
||||
```python
|
||||
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
|
||||
```
|
||||
|
||||
### 导出
|
||||
导出一组训练好的YOLOv5s-cls, ResNet和EfficientNet模型到ONNX和TensorRT:
|
||||
```bash
|
||||
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
## <div align="center">贡献</div>
|
||||
|
||||
我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
|
||||
|
||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
|
||||
|
||||
## <div align="center">联系</div>
|
||||
|
||||
关于YOLOv5的漏洞和功能问题,请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)。商业咨询或技术支持服务请访问[https://ultralytics.com/contact](https://ultralytics.com/contact)。
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
||||
</div>
|
||||
|
||||
[assets]: https://github.com/ultralytics/yolov5/releases
|
||||
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
|
@ -0,0 +1,27 @@
|
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
# README translation action to translate README.md to Chinese as README.zh-CN.md on any change to README.md
|
||||
|
||||
name: Translate README
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- master
|
||||
paths:
|
||||
- README.md
|
||||
|
||||
jobs:
|
||||
Translate:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 16
|
||||
# ISO Langusge Codes: https://cloud.google.com/translate/docs/languages
|
||||
- name: Adding README - Chinese Simplified
|
||||
uses: dephraiim/translate-readme@main
|
||||
with:
|
||||
LANG: zh-CN
|
|
@ -50,7 +50,7 @@ repos:
|
|||
additional_dependencies:
|
||||
- mdformat-gfm
|
||||
- mdformat-black
|
||||
exclude: "README.md|README_cn.md"
|
||||
exclude: "README.md|README.zh-CN.md"
|
||||
|
||||
- repo: https://github.com/asottile/yesqa
|
||||
rev: v1.4.0
|
||||
|
|
17
README.md
17
README.md
|
@ -4,7 +4,7 @@
|
|||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a>
|
||||
</p>
|
||||
|
||||
English | [简体中文](.github/README_cn.md)
|
||||
[English](README.md) | [简体中文](README.zh-CN.md)
|
||||
<br>
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
|
@ -15,15 +15,11 @@
|
|||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
<p>
|
||||
YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a>
|
||||
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
||||
<br><br>
|
||||
To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
|
||||
<br><br>
|
||||
</p>
|
||||
|
||||
YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
||||
|
||||
To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
|
@ -313,7 +309,7 @@ YOLOv5 has been designed to be super easy to get started and simple to learn. We
|
|||
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][TTA] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+ [TTA][tta] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes</summary>
|
||||
|
@ -479,5 +475,4 @@ For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github
|
|||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
||||
</div>
|
||||
|
||||
[assets]: https://github.com/ultralytics/yolov5/releases
|
||||
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
||||
|
|
|
@ -0,0 +1,479 @@
|
|||
<div align="center">
|
||||
<p>
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a>
|
||||
</p>
|
||||
|
||||
[英语](README.md)|[简体中文](README.zh-CN.md)<br>
|
||||
|
||||
<div>
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||
<br>
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||
</div>
|
||||
<br>
|
||||
|
||||
YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultralytics.com">超力</a>对未来视觉 AI 方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。
|
||||
|
||||
要申请企业许可证,请填写表格<a href="https://ultralytics.com/license">Ultralytics 许可</a>.
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## <div align="center">Ultralytics 现场会议</div>
|
||||
|
||||
<div align="center">
|
||||
|
||||
[Ultralytics Live Session Ep。 2个](https://youtu.be/LKpuzZllNpA)✨将直播**欧洲中部时间 12 月 13 日星期二 19:00**和[约瑟夫·纳尔逊](https://github.com/josephofiowa)的[机器人流](https://roboflow.com/?ref=ultralytics)谁将与我们一起讨论全新的 Roboflow x Ultralytics HUB 集成。收听 Glenn 和 Joseph 询问如何通过无缝数据集集成来加快工作流程! 🔥
|
||||
|
||||
<a align="center" href="https://youtu.be/LKpuzZllNpA" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/85292283/205996456-bf3efa33-9c46-455e-b322-a64886cc7a0b.png"></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">细分 ⭐ 新</div>
|
||||
|
||||
<div align="center">
|
||||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
||||
<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
|
||||
</div>
|
||||
|
||||
我们新的 YOLOv5[发布 v7.0](https://github.com/ultralytics/yolov5/releases/v7.0)实例分割模型是世界上最快和最准确的,击败所有当前[SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco).我们使它们非常易于训练、验证和部署。查看我们的完整详细信息[发行说明](https://github.com/ultralytics/yolov5/releases/v7.0)并访问我们的[YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb)快速入门教程。
|
||||
|
||||
<details>
|
||||
<summary>Segmentation Checkpoints</summary>
|
||||
|
||||
<br>
|
||||
|
||||
我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 个时期的 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。我们在 Google 上进行了所有速度测试[协作临](https://colab.research.google.com/signup)便于重现的笔记本。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | 地图<sup>盒子<br>50-95 | 地图<sup>面具<br>50-95 | 火车时间<br><sup>300个纪元<br>A100(小时) | 速度<br><sup>ONNX 中央处理器<br>(小姐) | 速度<br><sup>同仁堂A100<br>(小姐) | 参数<br><sup>(男) | 失败者<br><sup>@640(二) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------- | ------------------ | ------------------ | ------------------------------- | ----------------------------- | -------------------------- | -------------- | ------------------- |
|
||||
| [YOLOv5n-se](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** |
|
||||
| [YOLOv5s-se](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 |
|
||||
| [YOLOv5m段](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 |
|
||||
| [YOLOv5l-se](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 我:43(X) | 857.4 | 2.9 | 47.9 | 147.7 |
|
||||
| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (zks) | 1579.2 | 4.5 | 88.8 | 265.7 |
|
||||
|
||||
- 使用 SGD 优化器将所有检查点训练到 300 个时期`lr0=0.01`和`weight_decay=5e-5`在图像大小 640 和所有默认设置。<br>运行记录到[HTTPS://玩豆瓣.爱/Glenn-就ocher/yo lo V5_V70_official](https://wandb.ai/glenn-jocher/YOLOv5_v70_official)
|
||||
- **准确性**值适用于 COCO 数据集上的单模型单尺度。<br>重现者`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
|
||||
- **速度**使用 a 对超过 100 个推理图像进行平均[协作临](https://colab.research.google.com/signup)A100 高 RAM 实例。值仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>重现者`python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
|
||||
- **出口**到 FP32 的 ONNX 和 FP16 的 TensorRT 完成`export.py`.<br>重现者`python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Segmentation Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 火车
|
||||
|
||||
YOLOv5分割训练支持自动下载COCO128-seg分割数据集`--data coco128-seg.yaml`COCO-segments 数据集的参数和手动下载`bash data/scripts/get_coco.sh --train --val --segments`接着`python train.py --data coco.yaml`.
|
||||
|
||||
```bash
|
||||
# Single-GPU
|
||||
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
|
||||
|
||||
# Multi-GPU DDP
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 瓦尔
|
||||
|
||||
在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images)
|
||||
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5m-seg.pt"
|
||||
) # load from PyTorch Hub (WARNING: inference not yet supported)
|
||||
```
|
||||
|
||||
|  |  |
|
||||
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
|
||||
### 出口
|
||||
|
||||
将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">文档</div>
|
||||
|
||||
见[YOLOv5 文档](https://docs.ultralytics.com)有关培训、测试和部署的完整文档。请参阅下面的快速入门示例。
|
||||
|
||||
<details open>
|
||||
<summary>Install</summary>
|
||||
|
||||
克隆回购并安装[要求.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt)在一个[**Python>=3.7.0**](https://www.python.org/)环境,包括[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5 # clone
|
||||
cd yolov5
|
||||
pip install -r requirements.txt # install
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Inference</summary>
|
||||
|
||||
YOLOv5[PyTorch 中心](https://github.com/ultralytics/yolov5/issues/36)推理。[楷模](https://github.com/ultralytics/yolov5/tree/master/models)自动从最新下载
|
||||
YOLOv5[发布](https://github.com/ultralytics/yolov5/releases).
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Model
|
||||
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
|
||||
|
||||
# Images
|
||||
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
|
||||
|
||||
# Inference
|
||||
results = model(img)
|
||||
|
||||
# Results
|
||||
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Inference with detect.py</summary>
|
||||
|
||||
`detect.py`在各种来源上运行推理,下载[楷模](https://github.com/ultralytics/yolov5/tree/master/models)自动从
|
||||
最新的YOLOv5[发布](https://github.com/ultralytics/yolov5/releases)并将结果保存到`runs/detect`.
|
||||
|
||||
```bash
|
||||
python detect.py --weights yolov5s.pt --source 0 # webcam
|
||||
img.jpg # image
|
||||
vid.mp4 # video
|
||||
screen # screenshot
|
||||
path/ # directory
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Training</summary>
|
||||
|
||||
下面的命令重现 YOLOv5[可可](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)结果。[楷模](https://github.com/ultralytics/yolov5/tree/master/models)和[数据集](https://github.com/ultralytics/yolov5/tree/master/data)自动从最新下载
|
||||
YOLOv5[发布](https://github.com/ultralytics/yolov5/releases). YOLOv5n/s/m/l/x 的训练时间为
|
||||
V100 GPU 上 1/2/4/6/8 天([多GPU](https://github.com/ultralytics/yolov5/issues/475)倍快)。使用
|
||||
最大的`--batch-size`可能,或通过`--batch-size -1`为了
|
||||
YOLOv5[自动批处理](https://github.com/ultralytics/yolov5/pull/5092).显示的批量大小适用于 V100-16GB。
|
||||
|
||||
```bash
|
||||
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
|
||||
yolov5s 64
|
||||
yolov5m 40
|
||||
yolov5l 24
|
||||
yolov5x 16
|
||||
```
|
||||
|
||||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
||||
|
||||
</details>
|
||||
|
||||
<details open>
|
||||
<summary>Tutorials</summary>
|
||||
|
||||
- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 推荐
|
||||
- [获得最佳训练结果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️
|
||||
推荐的
|
||||
- [多 GPU 训练](https://github.com/ultralytics/yolov5/issues/475)
|
||||
- [PyTorch 中心](https://github.com/ultralytics/yolov5/issues/36)🌟 新
|
||||
- [TFLite、ONNX、CoreML、TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251)🚀
|
||||
- [NVIDIA Jetson Nano 部署](https://github.com/ultralytics/yolov5/issues/9627)🌟 新
|
||||
- [测试时间增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
||||
- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
|
||||
- [模型修剪/稀疏度](https://github.com/ultralytics/yolov5/issues/304)
|
||||
- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
|
||||
- [使用冻结层进行迁移学习](https://github.com/ultralytics/yolov5/issues/1314)
|
||||
- [架构总结](https://github.com/ultralytics/yolov5/issues/6998)🌟 新
|
||||
- [用于数据集、标签和主动学习的 Roboflow](https://github.com/ultralytics/yolov5/issues/4975)🌟 新
|
||||
- [ClearML 记录](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml)🌟 新
|
||||
- [所以平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform)🌟 新
|
||||
- [彗星记录](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet)🌟 新
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">集成</div>
|
||||
|
||||
<br>
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/master/im/integrations-loop.png"></a>
|
||||
<br>
|
||||
<br>
|
||||
|
||||
<div align="center">
|
||||
<a href="https://roboflow.com/?ref=ultralytics">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://cutt.ly/yolov5-readme-clearml">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-readme-comet">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-comet.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="15%" height="0" alt="" />
|
||||
<a href="https://bit.ly/yolov5-deci-platform">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
| 机器人流 | ClearML ⭐ 新 | 彗星⭐新 | 所以⭐新 |
|
||||
| :-------------------------------------------------------------------------: | :-----------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------------: |
|
||||
| 将您的自定义数据集标记并直接导出到 YOLOv5 以进行训练[机器人流](https://roboflow.com/?ref=ultralytics) | 使用自动跟踪、可视化甚至远程训练 YOLOv5[清除ML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[彗星](https://bit.ly/yolov5-readme-comet)可让您保存 YOLOv5 模型、恢复训练以及交互式可视化和调试预测 | 一键自动编译量化YOLOv5以获得更好的推理性能[所以](https://bit.ly/yolov5-deci-platform) |
|
||||
|
||||
## <div align="center">Ultralytics 集线器</div>
|
||||
|
||||
[Ultralytics 集线器](https://bit.ly/ultralytics_hub)是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀 模型并以无缝体验部署到现实世界的无代码解决方案。开始使用**自由的**现在!
|
||||
|
||||
<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
|
||||
<img width="100%" src="https://github.com/ultralytics/assets/raw/master/im/ultralytics-hub.png"></a>
|
||||
|
||||
## <div align="center">为什么选择 YOLOv5</div>
|
||||
|
||||
YOLOv5 被设计为超级容易上手和简单易学。我们优先考虑现实世界的结果。
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
||||
<details>
|
||||
<summary>YOLOv5-P5 640 Figure</summary>
|
||||
|
||||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
||||
</details>
|
||||
<details>
|
||||
<summary>Figure Notes</summary>
|
||||
|
||||
- **COCO AP 值**表示[map@0.5](mailto:mAP@0.5):0.95 指标在 5000 张图像上测得[COCO val2017](http://cocodataset.org)从 256 到 1536 的各种推理大小的数据集。
|
||||
- **显卡速度**测量每张图像的平均推理时间[COCO val2017](http://cocodataset.org)数据集使用[美国销售.Excelerge](https://aws.amazon.com/ec2/instance-types/p3/)批量大小为 32 的 V100 实例。
|
||||
- **高效**数据来自[谷歌/汽车](https://github.com/google/automl)批量大小为 8。
|
||||
- **复制**经过`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
||||
|
||||
</details>
|
||||
|
||||
### 预训练检查点
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | 地图<sup>值<br>50-95 | 地图<sup>值<br>50 | 速度<br><sup>处理器b1<br>(小姐) | 速度<br><sup>V100 b1<br>(小姐) | 速度<br><sup>V100 b32<br>(小姐) | 参数<br><sup>(男) | 失败者<br><sup>@640(二) |
|
||||
| --------------------------------------------------------------------------------------------------- | --------------- | ----------------- | ---------------- | ------------------------ | -------------------------- | --------------------------- | -------------- | ------------------- |
|
||||
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | 45.7 | **45** | **6.3** | **0.6** | **1.9** | **4.5** |
|
||||
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
|
||||
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
|
||||
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
|
||||
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
|
||||
| | | | | | | | | |
|
||||
| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n6.pt) | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
|
||||
| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s6.pt) | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 12.6 | 16.8 |
|
||||
| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m6.pt) | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
|
||||
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l6.pt) | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
|
||||
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt)<br>+[电讯局][tta] | 1280<br>1536 | 55.0<br>**55.8** | 72.7<br>**72.7** | 3136<br>- | 26.2<br>- | 19.4<br>- | 140.7<br>- | 209.8<br>- |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes</summary>
|
||||
|
||||
- 所有检查点都使用默认设置训练到 300 个时期。纳米和小型型号使用[hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml)hyps,所有其他人都使用[hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
||||
- \*\*地图<sup>值</sup>\*\*值适用于单模型单尺度[COCO val2017](http://cocodataset.org)数据集。<br>重现者`python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
||||
- **速度**使用 a 对 COCO val 图像进行平均[美国销售.Excelerge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (~1 ms/img) 不包括在内。<br>重现者`python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
||||
- **电讯局**[测试时间增加](https://github.com/ultralytics/yolov5/issues/303)包括反射和尺度增强。<br>重现者`python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">分类⭐新</div>
|
||||
|
||||
YOLOv5[发布 v6.2](https://github.com/ultralytics/yolov5/releases)带来对分类模型训练、验证和部署的支持!查看我们的完整详细信息[发行说明](https://github.com/ultralytics/yolov5/releases/v6.2)并访问我们的[YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb)快速入门教程。
|
||||
|
||||
<details>
|
||||
<summary>Classification Checkpoints</summary>
|
||||
|
||||
<br>
|
||||
|
||||
我们使用 4xA100 实例在 ImageNet 上训练了 90 个时期的 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。我们在 Google 上进行了所有速度测试[协作临](https://colab.research.google.com/signup)为了便于重现。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>烹饪 | 训练<br><sup>90个纪元<br>4xA100(小时) | 速度<br><sup>ONNX 中央处理器<br>(小姐) | 速度<br><sup>TensorRT V100<br>(小姐) | 参数<br><sup>(男) | 失败者<br><sup>@224(二) |
|
||||
| ------------------------------------------------------------------------------------------ | --------------- | ---------------- | -------------- | ------------------------------ | ----------------------------- | -------------------------------- | -------------- | ------------------- |
|
||||
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
|
||||
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
|
||||
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
|
||||
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
|
||||
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
|
||||
| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
|
||||
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
|
||||
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
|
||||
| | | | | | | | | |
|
||||
| [高效网络_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
|
||||
| [高效网络 b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
|
||||
| [我们将预测](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
|
||||
| [高效Netb3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
|
||||
|
||||
<details>
|
||||
<summary>Table Notes (click to expand)</summary>
|
||||
|
||||
- 使用 SGD 优化器将所有检查点训练到 90 个时期`lr0=0.001`和`weight_decay=5e-5`在图像大小 224 和所有默认设置。<br>运行记录到[HTTPS://玩豆瓣.爱/Glenn-就ocher/yo lo V5-classifier-V6-2](https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2)
|
||||
- **准确性**值适用于单模型单尺度[ImageNet-1k](https://www.image-net.org/index.php)数据集。<br>重现者`python classify/val.py --data ../datasets/imagenet --img 224`
|
||||
- **速度**使用谷歌平均超过 100 个推理图像[协作临](https://colab.research.google.com/signup)V100 高 RAM 实例。<br>重现者`python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
|
||||
- **出口**到 FP32 的 ONNX 和 FP16 的 TensorRT 完成`export.py`.<br>重现者`python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
|
||||
</details>
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Classification Usage Examples <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
|
||||
|
||||
### 火车
|
||||
|
||||
YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集`--data`争论。开始使用 MNIST 进行训练`--data mnist`.
|
||||
|
||||
```bash
|
||||
# Single-GPU
|
||||
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
|
||||
|
||||
# Multi-GPU DDP
|
||||
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
|
||||
```
|
||||
|
||||
### 瓦尔
|
||||
|
||||
在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性:
|
||||
|
||||
```bash
|
||||
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
|
||||
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg:
|
||||
|
||||
```bash
|
||||
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
|
||||
```
|
||||
|
||||
```python
|
||||
model = torch.hub.load(
|
||||
"ultralytics/yolov5", "custom", "yolov5s-cls.pt"
|
||||
) # load from PyTorch Hub
|
||||
```
|
||||
|
||||
### 出口
|
||||
|
||||
将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT:
|
||||
|
||||
```bash
|
||||
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">环境</div>
|
||||
|
||||
在几秒钟内开始使用我们经过验证的环境。单击下面的每个图标了解详细信息。
|
||||
|
||||
<div align="center">
|
||||
<a href="https://bit.ly/yolov5-paperspace-notebook">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="5%" alt="" />
|
||||
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
||||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
|
||||
</div>
|
||||
|
||||
## <div align="center">贡献</div>
|
||||
|
||||
我们喜欢您的意见!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的[投稿指南](CONTRIBUTING.md)开始,并填写[YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们发送您的体验反馈。感谢我们所有的贡献者!
|
||||
|
||||
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
||||
|
||||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/image-contributors-1280.png" /></a>
|
||||
|
||||
## <div align="center">执照</div>
|
||||
|
||||
YOLOv5 在两种不同的许可下可用:
|
||||
|
||||
- **GPL-3.0 许可证**: 看[执照](https://github.com/ultralytics/yolov5/blob/master/LICENSE)文件的详细信息。
|
||||
- **企业执照**:在没有 GPL-3.0 开源要求的情况下为商业产品开发提供更大的灵活性。典型用例是将 Ultralytics 软件和 AI 模型嵌入到商业产品和应用程序中。在以下位置申请企业许可证[Ultralytics 许可](https://ultralytics.com/license).
|
||||
|
||||
## <div align="center">接触</div>
|
||||
|
||||
对于 YOLOv5 错误和功能请求,请访问[GitHub 问题](https://github.com/ultralytics/yolov5/issues).如需专业支持,请[联系我们](https://ultralytics.com/contact).
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<a href="https://github.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="3%" alt="" /></a>
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="3%" alt="" />
|
||||
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
|
||||
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="3%" alt="" /></a>
|
||||
</div>
|
||||
|
||||
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
Loading…
Reference in New Issue