Change optimizer parameters group method (#1239)

* Change optimizer parameters group method

* Add torch nn

* Change isinstance method(torch.Tensor to nn.Parameter)

* parameter freeze fix, PEP8 reformat

* freeze bug fix

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/1279/head
Junghoon Kim 2020-11-02 08:08:36 +09:00 committed by GitHub
parent 96fcde40b8
commit 187f7c2ed1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 14 additions and 14 deletions

View File

@ -10,6 +10,7 @@ from warnings import warn
import math
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
@ -80,12 +81,12 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
# Freeze
freeze = ['', ] # parameter names to freeze (full or partial)
if any(freeze):
for k, v in model.named_parameters():
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
@ -93,14 +94,13 @@ def train(hyp, opt, device, tb_writer=None, wandb=None):
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_parameters():
v.requires_grad = True
if '.bias' in k:
pg2.append(v) # biases
elif '.weight' in k and '.bn' not in k:
pg1.append(v) # apply weight decay
else:
pg0.append(v) # all else
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum