work with later versions of pytorch

pull/13506/head
Edward Yang 2025-01-24 19:47:09 +11:00
parent dd4f147016
commit 19c93d5af4
3 changed files with 7 additions and 7 deletions

View File

@ -23,7 +23,7 @@ import requests
import torch
import torch.nn as nn
from PIL import Image
from torch.cuda import amp
from torch import amp
from utils import TryExcept
from utils.dataloaders import exif_transpose, letterbox
@ -728,7 +728,7 @@ class AutoShape(nn.Module):
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
if isinstance(ims, torch.Tensor): # torch
with amp.autocast(autocast):
with amp.autocast("cuda", enabled=autocast):
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
# Pre-process
@ -755,7 +755,7 @@ class AutoShape(nn.Module):
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
with amp.autocast(autocast):
with amp.autocast("cuda", enabled=autocast):
# Inference
with dt[1]:
y = self.model(x, augment=augment) # forward

View File

@ -4,7 +4,7 @@
# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.18.5,<2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2,<10
psutil # system resources
@ -12,7 +12,7 @@ PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
torch>=1.7.0,<1.14 # see https://pytorch.org/get-started/locally (recommended)
torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.8.1
tqdm>=4.64.0
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012

View File

@ -250,7 +250,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = torch.cuda.amp.GradScaler(enabled=amp)
scaler = torch.amp.GradScaler("cuda", enabled=amp)
stopper, stop = EarlyStopping(patience=opt.patience), False
compute_loss = ComputeLoss(model) # init loss class
callbacks.run('on_train_start')
@ -305,7 +305,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
with torch.cuda.amp.autocast(amp):
with torch.amp.autocast("cuda", enabled=amp):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if RANK != -1: