diff --git a/README.md b/README.md
index 6df01224e..df4060b81 100755
--- a/README.md
+++ b/README.md
@@ -25,8 +25,8 @@ This repository represents Ultralytics open-source research into future object d
** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
-** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
-** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
+** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
+** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
@@ -40,14 +40,22 @@ $ pip install -U -r requirements.txt
## Tutorials
-* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb)
-* [Kaggle](https://www.kaggle.com/ultralytics/yolov5)
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
-* [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
-* [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
+* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
+* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
+
+
+## Environments
+
+YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
+
+- **Google Colab Notebook** with free GPU:
+- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
+- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
+- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
## Inference
@@ -80,7 +88,8 @@ Results saved to /content/yolov5/inference/output
-## Reproduce Our Training
+
+## Training
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
@@ -92,16 +101,6 @@ $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size
-## Reproduce Our Environment
-
-YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
-
-- **Google Colab Notebook** with free GPU:
-- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
-- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
-- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
-
-
## Citation
[](https://zenodo.org/badge/latestdoi/264818686)
diff --git a/train.py b/train.py
index 26b35b684..879bb2e07 100644
--- a/train.py
+++ b/train.py
@@ -186,7 +186,7 @@ def train(hyp):
# model._initialize_biases(cf.to(device))
plot_labels(labels, save_dir=log_dir)
if tb_writer:
- tb_writer.add_hparams(hyp, {})
+ # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
tb_writer.add_histogram('classes', c, 0)
# Check anchors