Update Comet hyperlinks (#10500)

* Update README.md

Signed-off-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>

* Update README.md

Signed-off-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>

* Update README.md

Signed-off-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>

* Update README.md

Signed-off-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>

* Update tutorial.ipynb

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update tutorial.ipynb

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update tutorial.ipynb

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update README.md

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

* Update README.md

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>

Signed-off-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/10502/head
nerdyespresso 2022-12-15 07:56:42 -05:00 committed by GitHub
parent 1752768fb3
commit 1ae91940ab
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 12 additions and 12 deletions

View File

@ -264,7 +264,7 @@ python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml -
|Roboflow|ClearML ⭐ NEW|Comet ⭐ NEW|Deci ⭐ NEW|
|:-:|:-:|:-:|:-:|
|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|
|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|
## <div align="center">Ultralytics HUB</div>

View File

@ -1341,7 +1341,7 @@
},
"source": [
"## Comet Logging and Visualization 🌟 NEW\n",
"[Comet](https://bit.ly/yolov5-readme-comet) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"[Comet](https://bit.ly/yolov5-readme-comet2) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"\n",
"Getting started is easy:\n",
"```shell\n",
@ -1476,4 +1476,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
}
}

View File

@ -454,7 +454,7 @@
},
"source": [
"## Comet Logging and Visualization 🌟 NEW\n",
"[Comet](https://bit.ly/yolov5-readme-comet) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"[Comet](https://bit.ly/yolov5-readme-comet2) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"\n",
"Getting started is easy:\n",
"```shell\n",
@ -590,4 +590,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
}
}

2
tutorial.ipynb vendored
View File

@ -860,7 +860,7 @@
"cell_type": "markdown",
"source": [
"## Comet Logging and Visualization 🌟 NEW\n",
"[Comet](https://bit.ly/yolov5-readme-comet) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"[Comet](https://bit.ly/yolov5-readme-comet2) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes! \n",
"\n",
"Getting started is easy:\n",
"```shell\n",

View File

@ -2,13 +2,13 @@
# YOLOv5 with Comet
This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet)
This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2)
# About Comet
Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models.
Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://bit.ly/yolov5-colab-comet-panels)!
Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)!
Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!
# Getting Started
@ -54,7 +54,7 @@ That's it! Comet will automatically log your hyperparameters, command line argum
<img width="1920" alt="yolo-ui" src="https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png">
# Try out an Example!
Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&ref=yolov5&utm_source=yolov5&utm_medium=affilliate&utm_campaign=yolov5_comet_integration)
Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
Or better yet, try it out yourself in this Colab Notebook
@ -119,7 +119,7 @@ You can control the frequency of logged predictions and the associated images by
**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly.
Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&ref=yolov5&utm_source=yolov5&utm_medium=affilliate&utm_campaign=yolov5_comet_integration)
Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
```shell
@ -161,7 +161,7 @@ env COMET_LOG_PER_CLASS_METRICS=true python train.py \
## Uploading a Dataset to Comet Artifacts
If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?ref=yolov5&utm_source=yolov5&utm_medium=affilliate&utm_campaign=yolov5_comet_integration), you can do so using the `upload_dataset` flag.
If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag.
The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/tutorials/train-custom-datasets/#3-organize-directories). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file.
@ -251,6 +251,6 @@ comet optimizer -j <set number of workers> utils/loggers/comet/hpo.py \
### Visualizing Results
Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?ref=yolov5&utm_source=yolov5&utm_medium=affilliate&utm_campaign=yolov5_comet_integration)
Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
<img width="1626" alt="hyperparameter-yolo" src="https://user-images.githubusercontent.com/7529846/186914869-7dc1de14-583f-4323-967b-c9a66a29e495.png">