Update 4 main ops for paths and .run() (#3715)
* Add yolov5/ to path * rename functions to run() * cleanup * rename fix * CI fix * cleanup find models/export.pypull/3720/head
parent
75c0ff43af
commit
1f69d12591
|
@ -74,5 +74,5 @@ jobs:
|
|||
|
||||
python hubconf.py # hub
|
||||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect
|
||||
python models/export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
||||
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
||||
shell: bash
|
||||
|
|
|
@ -52,5 +52,5 @@ jobs:
|
|||
|
||||

|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
|
||||
|
|
60
detect.py
60
detect.py
|
@ -1,4 +1,11 @@
|
|||
"""Run inference with a YOLOv5 model on images, videos, directories, streams
|
||||
|
||||
Usage:
|
||||
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -6,6 +13,9 @@ import cv2
|
|||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import LoadStreams, LoadImages
|
||||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
||||
|
@ -15,30 +25,30 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized
|
|||
|
||||
|
||||
@torch.no_grad()
|
||||
def detect(weights='yolov5s.pt', # model.pt path(s)
|
||||
source='data/images', # file/dir/URL/glob, 0 for webcam
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
max_det=1000, # maximum detections per image
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
view_img=False, # show results
|
||||
save_txt=False, # save results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_crop=False, # save cropped prediction boxes
|
||||
nosave=False, # do not save images/videos
|
||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||
agnostic_nms=False, # class-agnostic NMS
|
||||
augment=False, # augmented inference
|
||||
update=False, # update all models
|
||||
project='runs/detect', # save results to project/name
|
||||
name='exp', # save results to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
hide_labels=False, # hide labels
|
||||
hide_conf=False, # hide confidences
|
||||
half=False, # use FP16 half-precision inference
|
||||
):
|
||||
def run(weights='yolov5s.pt', # model.pt path(s)
|
||||
source='data/images', # file/dir/URL/glob, 0 for webcam
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
max_det=1000, # maximum detections per image
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
view_img=False, # show results
|
||||
save_txt=False, # save results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_crop=False, # save cropped prediction boxes
|
||||
nosave=False, # do not save images/videos
|
||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||
agnostic_nms=False, # class-agnostic NMS
|
||||
augment=False, # augmented inference
|
||||
update=False, # update all models
|
||||
project='runs/detect', # save results to project/name
|
||||
name='exp', # save results to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
hide_labels=False, # hide labels
|
||||
hide_conf=False, # hide confidences
|
||||
half=False, # use FP16 half-precision inference
|
||||
):
|
||||
save_img = not nosave and not source.endswith('.txt') # save inference images
|
||||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||||
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||||
|
@ -204,7 +214,7 @@ def parse_opt():
|
|||
def main(opt):
|
||||
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||
check_requirements(exclude=('tensorboard', 'thop'))
|
||||
detect(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
||||
|
||||
Usage:
|
||||
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
@ -14,7 +14,7 @@ import torch.nn as nn
|
|||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[1].as_posix()) # add yolov5/ to path
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.common import Conv
|
||||
from models.yolo import Detect
|
||||
|
@ -24,19 +24,19 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
|
|||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def export(weights='./yolov5s.pt', # weights path
|
||||
img_size=(640, 640), # image (height, width)
|
||||
batch_size=1, # batch size
|
||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
include=('torchscript', 'onnx', 'coreml'), # include formats
|
||||
half=False, # FP16 half-precision export
|
||||
inplace=False, # set YOLOv5 Detect() inplace=True
|
||||
train=False, # model.train() mode
|
||||
optimize=False, # TorchScript: optimize for mobile
|
||||
dynamic=False, # ONNX: dynamic axes
|
||||
simplify=False, # ONNX: simplify model
|
||||
opset_version=12, # ONNX: opset version
|
||||
):
|
||||
def run(weights='./yolov5s.pt', # weights path
|
||||
img_size=(640, 640), # image (height, width)
|
||||
batch_size=1, # batch size
|
||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
include=('torchscript', 'onnx', 'coreml'), # include formats
|
||||
half=False, # FP16 half-precision export
|
||||
inplace=False, # set YOLOv5 Detect() inplace=True
|
||||
train=False, # model.train() mode
|
||||
optimize=False, # TorchScript: optimize for mobile
|
||||
dynamic=False, # ONNX: dynamic axes
|
||||
simplify=False, # ONNX: simplify model
|
||||
opset_version=12, # ONNX: opset version
|
||||
):
|
||||
t = time.time()
|
||||
include = [x.lower() for x in include]
|
||||
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
||||
|
@ -165,7 +165,7 @@ def parse_opt():
|
|||
def main(opt):
|
||||
set_logging()
|
||||
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||
export(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
72
test.py
72
test.py
|
@ -1,6 +1,13 @@
|
|||
"""Test a trained YOLOv5 model accuracy on a custom dataset
|
||||
|
||||
Usage:
|
||||
$ python path/to/test.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
|
@ -9,6 +16,9 @@ import torch
|
|||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
||||
|
@ -19,32 +29,32 @@ from utils.torch_utils import select_device, time_synchronized
|
|||
|
||||
|
||||
@torch.no_grad()
|
||||
def test(data,
|
||||
weights=None, # model.pt path(s)
|
||||
batch_size=32, # batch size
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.001, # confidence threshold
|
||||
iou_thres=0.6, # NMS IoU threshold
|
||||
task='val', # train, val, test, speed or study
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
single_cls=False, # treat as single-class dataset
|
||||
augment=False, # augmented inference
|
||||
verbose=False, # verbose output
|
||||
save_txt=False, # save results to *.txt
|
||||
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_json=False, # save a cocoapi-compatible JSON results file
|
||||
project='runs/test', # save to project/name
|
||||
name='exp', # save to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=True, # use FP16 half-precision inference
|
||||
model=None,
|
||||
dataloader=None,
|
||||
save_dir=Path(''),
|
||||
plots=True,
|
||||
wandb_logger=None,
|
||||
compute_loss=None,
|
||||
):
|
||||
def run(data,
|
||||
weights=None, # model.pt path(s)
|
||||
batch_size=32, # batch size
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.001, # confidence threshold
|
||||
iou_thres=0.6, # NMS IoU threshold
|
||||
task='val', # train, val, test, speed or study
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
single_cls=False, # treat as single-class dataset
|
||||
augment=False, # augmented inference
|
||||
verbose=False, # verbose output
|
||||
save_txt=False, # save results to *.txt
|
||||
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||
save_conf=False, # save confidences in --save-txt labels
|
||||
save_json=False, # save a cocoapi-compatible JSON results file
|
||||
project='runs/test', # save to project/name
|
||||
name='exp', # save to project/name
|
||||
exist_ok=False, # existing project/name ok, do not increment
|
||||
half=True, # use FP16 half-precision inference
|
||||
model=None,
|
||||
dataloader=None,
|
||||
save_dir=Path(''),
|
||||
plots=True,
|
||||
wandb_logger=None,
|
||||
compute_loss=None,
|
||||
):
|
||||
# Initialize/load model and set device
|
||||
training = model is not None
|
||||
if training: # called by train.py
|
||||
|
@ -327,12 +337,12 @@ def main(opt):
|
|||
check_requirements(exclude=('tensorboard', 'thop'))
|
||||
|
||||
if opt.task in ('train', 'val', 'test'): # run normally
|
||||
test(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
elif opt.task == 'speed': # speed benchmarks
|
||||
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
|
||||
test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
||||
save_json=False, plots=False)
|
||||
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
||||
save_json=False, plots=False)
|
||||
|
||||
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
|
||||
|
@ -342,8 +352,8 @@ def main(opt):
|
|||
y = [] # y axis
|
||||
for i in x: # img-size
|
||||
print(f'\nRunning {f} point {i}...')
|
||||
r, _, t = test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
||||
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
|
||||
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
||||
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
|
||||
y.append(r + t) # results and times
|
||||
np.savetxt(f, y, fmt='%10.4g') # save
|
||||
os.system('zip -r study.zip study_*.txt')
|
||||
|
|
58
train.py
58
train.py
|
@ -1,8 +1,15 @@
|
|||
"""Train a YOLOv5 model on a custom dataset
|
||||
|
||||
Usage:
|
||||
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from copy import deepcopy
|
||||
|
@ -22,6 +29,9 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
|||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
import test # for end-of-epoch mAP
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
|
@ -89,7 +99,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
# W&B
|
||||
opt.hyp = hyp # add hyperparameters
|
||||
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
||||
run_id = run_id if opt.resume else None # start fresh run if transfer learning
|
||||
run_id = run_id if opt.resume else None # start fresh run if transfer learning
|
||||
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
|
||||
loggers['wandb'] = wandb_logger.wandb
|
||||
if loggers['wandb']:
|
||||
|
@ -375,18 +385,18 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
final_epoch = epoch + 1 == epochs
|
||||
if not notest or final_epoch: # Calculate mAP
|
||||
wandb_logger.current_epoch = epoch + 1
|
||||
results, maps, _ = test.test(data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
model=ema.ema,
|
||||
single_cls=single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=is_coco and final_epoch,
|
||||
verbose=nc < 50 and final_epoch,
|
||||
plots=plots and final_epoch,
|
||||
wandb_logger=wandb_logger,
|
||||
compute_loss=compute_loss)
|
||||
results, maps, _ = test.run(data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
model=ema.ema,
|
||||
single_cls=single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=is_coco and final_epoch,
|
||||
verbose=nc < 50 and final_epoch,
|
||||
plots=plots and final_epoch,
|
||||
wandb_logger=wandb_logger,
|
||||
compute_loss=compute_loss)
|
||||
|
||||
# Write
|
||||
with open(results_file, 'a') as f:
|
||||
|
@ -443,17 +453,17 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
if not evolve:
|
||||
if is_coco: # COCO dataset
|
||||
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
|
||||
results, _, _ = test.test(data,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
conf_thres=0.001,
|
||||
iou_thres=0.7,
|
||||
model=attempt_load(m, device).half(),
|
||||
single_cls=single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=True,
|
||||
plots=False)
|
||||
results, _, _ = test.run(data,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
conf_thres=0.001,
|
||||
iou_thres=0.7,
|
||||
model=attempt_load(m, device).half(),
|
||||
single_cls=single_cls,
|
||||
dataloader=testloader,
|
||||
save_dir=save_dir,
|
||||
save_json=True,
|
||||
plots=False)
|
||||
|
||||
# Strip optimizers
|
||||
for f in last, best:
|
||||
|
|
|
@ -1125,7 +1125,7 @@
|
|||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1212,7 +1212,7 @@
|
|||
" done\n",
|
||||
" python hubconf.py # hub\n",
|
||||
" python models/yolo.py --cfg $m.yaml # inspect\n",
|
||||
" python models/export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
||||
" python export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
||||
"done"
|
||||
],
|
||||
"execution_count": null,
|
||||
|
|
Loading…
Reference in New Issue