Update 4 main ops for paths and .run() (#3715)
* Add yolov5/ to path * rename functions to run() * cleanup * rename fix * CI fix * cleanup find models/export.pypull/3720/head
parent
75c0ff43af
commit
1f69d12591
|
@ -74,5 +74,5 @@ jobs:
|
||||||
|
|
||||||
python hubconf.py # hub
|
python hubconf.py # hub
|
||||||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect
|
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect
|
||||||
python models/export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|
|
@ -52,5 +52,5 @@ jobs:
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||||
|
|
||||||
|
|
60
detect.py
60
detect.py
|
@ -1,4 +1,11 @@
|
||||||
|
"""Run inference with a YOLOv5 model on images, videos, directories, streams
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
|
||||||
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import sys
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -6,6 +13,9 @@ import cv2
|
||||||
import torch
|
import torch
|
||||||
import torch.backends.cudnn as cudnn
|
import torch.backends.cudnn as cudnn
|
||||||
|
|
||||||
|
FILE = Path(__file__).absolute()
|
||||||
|
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||||
|
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from utils.datasets import LoadStreams, LoadImages
|
from utils.datasets import LoadStreams, LoadImages
|
||||||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
||||||
|
@ -15,30 +25,30 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def detect(weights='yolov5s.pt', # model.pt path(s)
|
def run(weights='yolov5s.pt', # model.pt path(s)
|
||||||
source='data/images', # file/dir/URL/glob, 0 for webcam
|
source='data/images', # file/dir/URL/glob, 0 for webcam
|
||||||
imgsz=640, # inference size (pixels)
|
imgsz=640, # inference size (pixels)
|
||||||
conf_thres=0.25, # confidence threshold
|
conf_thres=0.25, # confidence threshold
|
||||||
iou_thres=0.45, # NMS IOU threshold
|
iou_thres=0.45, # NMS IOU threshold
|
||||||
max_det=1000, # maximum detections per image
|
max_det=1000, # maximum detections per image
|
||||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
view_img=False, # show results
|
view_img=False, # show results
|
||||||
save_txt=False, # save results to *.txt
|
save_txt=False, # save results to *.txt
|
||||||
save_conf=False, # save confidences in --save-txt labels
|
save_conf=False, # save confidences in --save-txt labels
|
||||||
save_crop=False, # save cropped prediction boxes
|
save_crop=False, # save cropped prediction boxes
|
||||||
nosave=False, # do not save images/videos
|
nosave=False, # do not save images/videos
|
||||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||||
agnostic_nms=False, # class-agnostic NMS
|
agnostic_nms=False, # class-agnostic NMS
|
||||||
augment=False, # augmented inference
|
augment=False, # augmented inference
|
||||||
update=False, # update all models
|
update=False, # update all models
|
||||||
project='runs/detect', # save results to project/name
|
project='runs/detect', # save results to project/name
|
||||||
name='exp', # save results to project/name
|
name='exp', # save results to project/name
|
||||||
exist_ok=False, # existing project/name ok, do not increment
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
line_thickness=3, # bounding box thickness (pixels)
|
line_thickness=3, # bounding box thickness (pixels)
|
||||||
hide_labels=False, # hide labels
|
hide_labels=False, # hide labels
|
||||||
hide_conf=False, # hide confidences
|
hide_conf=False, # hide confidences
|
||||||
half=False, # use FP16 half-precision inference
|
half=False, # use FP16 half-precision inference
|
||||||
):
|
):
|
||||||
save_img = not nosave and not source.endswith('.txt') # save inference images
|
save_img = not nosave and not source.endswith('.txt') # save inference images
|
||||||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||||||
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||||||
|
@ -204,7 +214,7 @@ def parse_opt():
|
||||||
def main(opt):
|
def main(opt):
|
||||||
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||||
check_requirements(exclude=('tensorboard', 'thop'))
|
check_requirements(exclude=('tensorboard', 'thop'))
|
||||||
detect(**vars(opt))
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
@ -14,7 +14,7 @@ import torch.nn as nn
|
||||||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||||
|
|
||||||
FILE = Path(__file__).absolute()
|
FILE = Path(__file__).absolute()
|
||||||
sys.path.append(FILE.parents[1].as_posix()) # add yolov5/ to path
|
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||||
|
|
||||||
from models.common import Conv
|
from models.common import Conv
|
||||||
from models.yolo import Detect
|
from models.yolo import Detect
|
||||||
|
@ -24,19 +24,19 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
|
||||||
from utils.torch_utils import select_device
|
from utils.torch_utils import select_device
|
||||||
|
|
||||||
|
|
||||||
def export(weights='./yolov5s.pt', # weights path
|
def run(weights='./yolov5s.pt', # weights path
|
||||||
img_size=(640, 640), # image (height, width)
|
img_size=(640, 640), # image (height, width)
|
||||||
batch_size=1, # batch size
|
batch_size=1, # batch size
|
||||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
include=('torchscript', 'onnx', 'coreml'), # include formats
|
include=('torchscript', 'onnx', 'coreml'), # include formats
|
||||||
half=False, # FP16 half-precision export
|
half=False, # FP16 half-precision export
|
||||||
inplace=False, # set YOLOv5 Detect() inplace=True
|
inplace=False, # set YOLOv5 Detect() inplace=True
|
||||||
train=False, # model.train() mode
|
train=False, # model.train() mode
|
||||||
optimize=False, # TorchScript: optimize for mobile
|
optimize=False, # TorchScript: optimize for mobile
|
||||||
dynamic=False, # ONNX: dynamic axes
|
dynamic=False, # ONNX: dynamic axes
|
||||||
simplify=False, # ONNX: simplify model
|
simplify=False, # ONNX: simplify model
|
||||||
opset_version=12, # ONNX: opset version
|
opset_version=12, # ONNX: opset version
|
||||||
):
|
):
|
||||||
t = time.time()
|
t = time.time()
|
||||||
include = [x.lower() for x in include]
|
include = [x.lower() for x in include]
|
||||||
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
||||||
|
@ -165,7 +165,7 @@ def parse_opt():
|
||||||
def main(opt):
|
def main(opt):
|
||||||
set_logging()
|
set_logging()
|
||||||
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||||
export(**vars(opt))
|
run(**vars(opt))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
72
test.py
72
test.py
|
@ -1,6 +1,13 @@
|
||||||
|
"""Test a trained YOLOv5 model accuracy on a custom dataset
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ python path/to/test.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||||
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
|
|
||||||
|
@ -9,6 +16,9 @@ import torch
|
||||||
import yaml
|
import yaml
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).absolute()
|
||||||
|
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||||
|
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from utils.datasets import create_dataloader
|
from utils.datasets import create_dataloader
|
||||||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
||||||
|
@ -19,32 +29,32 @@ from utils.torch_utils import select_device, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def test(data,
|
def run(data,
|
||||||
weights=None, # model.pt path(s)
|
weights=None, # model.pt path(s)
|
||||||
batch_size=32, # batch size
|
batch_size=32, # batch size
|
||||||
imgsz=640, # inference size (pixels)
|
imgsz=640, # inference size (pixels)
|
||||||
conf_thres=0.001, # confidence threshold
|
conf_thres=0.001, # confidence threshold
|
||||||
iou_thres=0.6, # NMS IoU threshold
|
iou_thres=0.6, # NMS IoU threshold
|
||||||
task='val', # train, val, test, speed or study
|
task='val', # train, val, test, speed or study
|
||||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||||
single_cls=False, # treat as single-class dataset
|
single_cls=False, # treat as single-class dataset
|
||||||
augment=False, # augmented inference
|
augment=False, # augmented inference
|
||||||
verbose=False, # verbose output
|
verbose=False, # verbose output
|
||||||
save_txt=False, # save results to *.txt
|
save_txt=False, # save results to *.txt
|
||||||
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
||||||
save_conf=False, # save confidences in --save-txt labels
|
save_conf=False, # save confidences in --save-txt labels
|
||||||
save_json=False, # save a cocoapi-compatible JSON results file
|
save_json=False, # save a cocoapi-compatible JSON results file
|
||||||
project='runs/test', # save to project/name
|
project='runs/test', # save to project/name
|
||||||
name='exp', # save to project/name
|
name='exp', # save to project/name
|
||||||
exist_ok=False, # existing project/name ok, do not increment
|
exist_ok=False, # existing project/name ok, do not increment
|
||||||
half=True, # use FP16 half-precision inference
|
half=True, # use FP16 half-precision inference
|
||||||
model=None,
|
model=None,
|
||||||
dataloader=None,
|
dataloader=None,
|
||||||
save_dir=Path(''),
|
save_dir=Path(''),
|
||||||
plots=True,
|
plots=True,
|
||||||
wandb_logger=None,
|
wandb_logger=None,
|
||||||
compute_loss=None,
|
compute_loss=None,
|
||||||
):
|
):
|
||||||
# Initialize/load model and set device
|
# Initialize/load model and set device
|
||||||
training = model is not None
|
training = model is not None
|
||||||
if training: # called by train.py
|
if training: # called by train.py
|
||||||
|
@ -327,12 +337,12 @@ def main(opt):
|
||||||
check_requirements(exclude=('tensorboard', 'thop'))
|
check_requirements(exclude=('tensorboard', 'thop'))
|
||||||
|
|
||||||
if opt.task in ('train', 'val', 'test'): # run normally
|
if opt.task in ('train', 'val', 'test'): # run normally
|
||||||
test(**vars(opt))
|
run(**vars(opt))
|
||||||
|
|
||||||
elif opt.task == 'speed': # speed benchmarks
|
elif opt.task == 'speed': # speed benchmarks
|
||||||
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
|
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
|
||||||
test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
||||||
save_json=False, plots=False)
|
save_json=False, plots=False)
|
||||||
|
|
||||||
elif opt.task == 'study': # run over a range of settings and save/plot
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||||
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
|
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
|
||||||
|
@ -342,8 +352,8 @@ def main(opt):
|
||||||
y = [] # y axis
|
y = [] # y axis
|
||||||
for i in x: # img-size
|
for i in x: # img-size
|
||||||
print(f'\nRunning {f} point {i}...')
|
print(f'\nRunning {f} point {i}...')
|
||||||
r, _, t = test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
||||||
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
|
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
|
||||||
y.append(r + t) # results and times
|
y.append(r + t) # results and times
|
||||||
np.savetxt(f, y, fmt='%10.4g') # save
|
np.savetxt(f, y, fmt='%10.4g') # save
|
||||||
os.system('zip -r study.zip study_*.txt')
|
os.system('zip -r study.zip study_*.txt')
|
||||||
|
|
58
train.py
58
train.py
|
@ -1,8 +1,15 @@
|
||||||
|
"""Train a YOLOv5 model on a custom dataset
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||||
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
import sys
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
@ -22,6 +29,9 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
FILE = Path(__file__).absolute()
|
||||||
|
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||||
|
|
||||||
import test # for end-of-epoch mAP
|
import test # for end-of-epoch mAP
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from models.yolo import Model
|
from models.yolo import Model
|
||||||
|
@ -89,7 +99,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||||
# W&B
|
# W&B
|
||||||
opt.hyp = hyp # add hyperparameters
|
opt.hyp = hyp # add hyperparameters
|
||||||
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
||||||
run_id = run_id if opt.resume else None # start fresh run if transfer learning
|
run_id = run_id if opt.resume else None # start fresh run if transfer learning
|
||||||
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
|
wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
|
||||||
loggers['wandb'] = wandb_logger.wandb
|
loggers['wandb'] = wandb_logger.wandb
|
||||||
if loggers['wandb']:
|
if loggers['wandb']:
|
||||||
|
@ -375,18 +385,18 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||||
final_epoch = epoch + 1 == epochs
|
final_epoch = epoch + 1 == epochs
|
||||||
if not notest or final_epoch: # Calculate mAP
|
if not notest or final_epoch: # Calculate mAP
|
||||||
wandb_logger.current_epoch = epoch + 1
|
wandb_logger.current_epoch = epoch + 1
|
||||||
results, maps, _ = test.test(data_dict,
|
results, maps, _ = test.run(data_dict,
|
||||||
batch_size=batch_size // WORLD_SIZE * 2,
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
imgsz=imgsz_test,
|
imgsz=imgsz_test,
|
||||||
model=ema.ema,
|
model=ema.ema,
|
||||||
single_cls=single_cls,
|
single_cls=single_cls,
|
||||||
dataloader=testloader,
|
dataloader=testloader,
|
||||||
save_dir=save_dir,
|
save_dir=save_dir,
|
||||||
save_json=is_coco and final_epoch,
|
save_json=is_coco and final_epoch,
|
||||||
verbose=nc < 50 and final_epoch,
|
verbose=nc < 50 and final_epoch,
|
||||||
plots=plots and final_epoch,
|
plots=plots and final_epoch,
|
||||||
wandb_logger=wandb_logger,
|
wandb_logger=wandb_logger,
|
||||||
compute_loss=compute_loss)
|
compute_loss=compute_loss)
|
||||||
|
|
||||||
# Write
|
# Write
|
||||||
with open(results_file, 'a') as f:
|
with open(results_file, 'a') as f:
|
||||||
|
@ -443,17 +453,17 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
||||||
if not evolve:
|
if not evolve:
|
||||||
if is_coco: # COCO dataset
|
if is_coco: # COCO dataset
|
||||||
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
|
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
|
||||||
results, _, _ = test.test(data,
|
results, _, _ = test.run(data,
|
||||||
batch_size=batch_size // WORLD_SIZE * 2,
|
batch_size=batch_size // WORLD_SIZE * 2,
|
||||||
imgsz=imgsz_test,
|
imgsz=imgsz_test,
|
||||||
conf_thres=0.001,
|
conf_thres=0.001,
|
||||||
iou_thres=0.7,
|
iou_thres=0.7,
|
||||||
model=attempt_load(m, device).half(),
|
model=attempt_load(m, device).half(),
|
||||||
single_cls=single_cls,
|
single_cls=single_cls,
|
||||||
dataloader=testloader,
|
dataloader=testloader,
|
||||||
save_dir=save_dir,
|
save_dir=save_dir,
|
||||||
save_json=True,
|
save_json=True,
|
||||||
plots=False)
|
plots=False)
|
||||||
|
|
||||||
# Strip optimizers
|
# Strip optimizers
|
||||||
for f in last, best:
|
for f in last, best:
|
||||||
|
|
|
@ -1125,7 +1125,7 @@
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1212,7 +1212,7 @@
|
||||||
" done\n",
|
" done\n",
|
||||||
" python hubconf.py # hub\n",
|
" python hubconf.py # hub\n",
|
||||||
" python models/yolo.py --cfg $m.yaml # inspect\n",
|
" python models/yolo.py --cfg $m.yaml # inspect\n",
|
||||||
" python models/export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
" python export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
||||||
"done"
|
"done"
|
||||||
],
|
],
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
|
|
Loading…
Reference in New Issue