Update 4 main ops for paths and .run() (#3715)
* Add yolov5/ to path * rename functions to run() * cleanup * rename fix * CI fix * cleanup find models/export.pypull/3720/head
parent
75c0ff43af
commit
1f69d12591
|
@ -74,5 +74,5 @@ jobs:
|
|||
|
||||
python hubconf.py # hub
|
||||
python models/yolo.py --cfg ${{ matrix.model }}.yaml # inspect
|
||||
python models/export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
||||
python export.py --img 128 --batch 1 --weights ${{ matrix.model }}.pt # export
|
||||
shell: bash
|
||||
|
|
|
@ -52,5 +52,5 @@ jobs:
|
|||
|
||||

|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
|
||||
|
|
14
detect.py
14
detect.py
|
@ -1,4 +1,11 @@
|
|||
"""Run inference with a YOLOv5 model on images, videos, directories, streams
|
||||
|
||||
Usage:
|
||||
$ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -6,6 +13,9 @@ import cv2
|
|||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import LoadStreams, LoadImages
|
||||
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
|
||||
|
@ -15,7 +25,7 @@ from utils.torch_utils import select_device, load_classifier, time_synchronized
|
|||
|
||||
|
||||
@torch.no_grad()
|
||||
def detect(weights='yolov5s.pt', # model.pt path(s)
|
||||
def run(weights='yolov5s.pt', # model.pt path(s)
|
||||
source='data/images', # file/dir/URL/glob, 0 for webcam
|
||||
imgsz=640, # inference size (pixels)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
|
@ -204,7 +214,7 @@ def parse_opt():
|
|||
def main(opt):
|
||||
print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||
check_requirements(exclude=('tensorboard', 'thop'))
|
||||
detect(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"""Export a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
|
||||
|
||||
Usage:
|
||||
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||
$ python path/to/export.py --weights yolov5s.pt --img 640 --batch 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
@ -14,7 +14,7 @@ import torch.nn as nn
|
|||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[1].as_posix()) # add yolov5/ to path
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.common import Conv
|
||||
from models.yolo import Detect
|
||||
|
@ -24,7 +24,7 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
|
|||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def export(weights='./yolov5s.pt', # weights path
|
||||
def run(weights='./yolov5s.pt', # weights path
|
||||
img_size=(640, 640), # image (height, width)
|
||||
batch_size=1, # batch size
|
||||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
|
@ -165,7 +165,7 @@ def parse_opt():
|
|||
def main(opt):
|
||||
set_logging()
|
||||
print(colorstr('export: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
||||
export(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
18
test.py
18
test.py
|
@ -1,6 +1,13 @@
|
|||
"""Test a trained YOLOv5 model accuracy on a custom dataset
|
||||
|
||||
Usage:
|
||||
$ python path/to/test.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
|
@ -9,6 +16,9 @@ import torch
|
|||
import yaml
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.datasets import create_dataloader
|
||||
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
||||
|
@ -19,7 +29,7 @@ from utils.torch_utils import select_device, time_synchronized
|
|||
|
||||
|
||||
@torch.no_grad()
|
||||
def test(data,
|
||||
def run(data,
|
||||
weights=None, # model.pt path(s)
|
||||
batch_size=32, # batch size
|
||||
imgsz=640, # inference size (pixels)
|
||||
|
@ -327,11 +337,11 @@ def main(opt):
|
|||
check_requirements(exclude=('tensorboard', 'thop'))
|
||||
|
||||
if opt.task in ('train', 'val', 'test'): # run normally
|
||||
test(**vars(opt))
|
||||
run(**vars(opt))
|
||||
|
||||
elif opt.task == 'speed': # speed benchmarks
|
||||
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
|
||||
test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
||||
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
|
||||
save_json=False, plots=False)
|
||||
|
||||
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||
|
@ -342,7 +352,7 @@ def main(opt):
|
|||
y = [] # y axis
|
||||
for i in x: # img-size
|
||||
print(f'\nRunning {f} point {i}...')
|
||||
r, _, t = test(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
||||
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
|
||||
iou_thres=opt.iou_thres, save_json=opt.save_json, plots=False)
|
||||
y.append(r + t) # results and times
|
||||
np.savetxt(f, y, fmt='%10.4g') # save
|
||||
|
|
14
train.py
14
train.py
|
@ -1,8 +1,15 @@
|
|||
"""Train a YOLOv5 model on a custom dataset
|
||||
|
||||
Usage:
|
||||
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from copy import deepcopy
|
||||
|
@ -22,6 +29,9 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
|||
from torch.utils.tensorboard import SummaryWriter
|
||||
from tqdm import tqdm
|
||||
|
||||
FILE = Path(__file__).absolute()
|
||||
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
||||
|
||||
import test # for end-of-epoch mAP
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Model
|
||||
|
@ -375,7 +385,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
final_epoch = epoch + 1 == epochs
|
||||
if not notest or final_epoch: # Calculate mAP
|
||||
wandb_logger.current_epoch = epoch + 1
|
||||
results, maps, _ = test.test(data_dict,
|
||||
results, maps, _ = test.run(data_dict,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
model=ema.ema,
|
||||
|
@ -443,7 +453,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
|||
if not evolve:
|
||||
if is_coco: # COCO dataset
|
||||
for m in [last, best] if best.exists() else [last]: # speed, mAP tests
|
||||
results, _, _ = test.test(data,
|
||||
results, _, _ = test.run(data,
|
||||
batch_size=batch_size // WORLD_SIZE * 2,
|
||||
imgsz=imgsz_test,
|
||||
conf_thres=0.001,
|
||||
|
|
|
@ -1125,7 +1125,7 @@
|
|||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
"If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1212,7 +1212,7 @@
|
|||
" done\n",
|
||||
" python hubconf.py # hub\n",
|
||||
" python models/yolo.py --cfg $m.yaml # inspect\n",
|
||||
" python models/export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
||||
" python export.py --weights $m.pt --img 640 --batch 1 # export\n",
|
||||
"done"
|
||||
],
|
||||
"execution_count": null,
|
||||
|
|
Loading…
Reference in New Issue