Training reproducibility improvements (#8213)

* attempt at reproducibility

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use deterministic algs

* fix everything :)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* revert dataloader changes

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* process_batch as np

* remove newline

* Remove dataloader init fcn

* Update val.py

* Update train.py

* revert additional changes

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update train.py

* Add --seed arg

* Update general.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update train.py

* Update train.py

* Update val.py

* Update train.py

* Update general.py

* Update general.py

* Add deterministic argument to init_seeds()

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
pull/8510/head
Ayush Chaurasia 2022-07-07 18:09:29 +05:30 committed by GitHub
parent 36f64a981d
commit 27d831b6e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 11 additions and 2 deletions

View File

@ -101,7 +101,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
# Config
plots = not evolve and not opt.noplots # create plots
cuda = device.type != 'cpu'
init_seeds(1 + RANK)
init_seeds(opt.seed + 1 + RANK, deterministic=True)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict['train'], data_dict['val']
@ -504,6 +504,7 @@ def parse_opt(known=False):
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
# Weights & Biases arguments

View File

@ -195,14 +195,22 @@ def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
def init_seeds(seed=0):
def init_seeds(seed=0, deterministic=False):
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
import torch.backends.cudnn as cudnn
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
# os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # for multi GPU, exception safe
def intersect_dicts(da, db, exclude=()):