Training reproducibility improvements (#8213)
* attempt at reproducibility * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * use deterministic algs * fix everything :) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * revert dataloader changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * process_batch as np * remove newline * Remove dataloader init fcn * Update val.py * Update train.py * revert additional changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update train.py * Add --seed arg * Update general.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update train.py * Update train.py * Update val.py * Update train.py * Update general.py * Update general.py * Add deterministic argument to init_seeds() Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/8510/head
parent
36f64a981d
commit
27d831b6e4
3
train.py
3
train.py
|
@ -101,7 +101,7 @@ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictio
|
|||
# Config
|
||||
plots = not evolve and not opt.noplots # create plots
|
||||
cuda = device.type != 'cpu'
|
||||
init_seeds(1 + RANK)
|
||||
init_seeds(opt.seed + 1 + RANK, deterministic=True)
|
||||
with torch_distributed_zero_first(LOCAL_RANK):
|
||||
data_dict = data_dict or check_dataset(data) # check if None
|
||||
train_path, val_path = data_dict['train'], data_dict['val']
|
||||
|
@ -504,6 +504,7 @@ def parse_opt(known=False):
|
|||
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
||||
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
||||
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
||||
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
||||
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
||||
|
||||
# Weights & Biases arguments
|
||||
|
|
|
@ -195,14 +195,22 @@ def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
|
|||
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
||||
|
||||
|
||||
def init_seeds(seed=0):
|
||||
def init_seeds(seed=0, deterministic=False):
|
||||
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
||||
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
|
||||
import torch.backends.cudnn as cudnn
|
||||
|
||||
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
||||
torch.use_deterministic_algorithms(True)
|
||||
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
||||
# os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
|
||||
# torch.cuda.manual_seed(seed)
|
||||
# torch.cuda.manual_seed_all(seed) # for multi GPU, exception safe
|
||||
|
||||
|
||||
def intersect_dicts(da, db, exclude=()):
|
||||
|
|
Loading…
Reference in New Issue