Update val.py speed and study tasks (#5608)

Accepts all arguments now by default resolving https://github.com/ultralytics/yolov5/issues/5600
This commit is contained in:
Glenn Jocher 2021-11-10 16:48:38 +01:00 committed by GitHub
parent 61c50199a2
commit 30bc089cbb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

39
val.py
View File

@ -339,26 +339,27 @@ def main(opt):
LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.') LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
run(**vars(opt)) run(**vars(opt))
elif opt.task == 'speed': # speed benchmarks else:
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: opt.half = True # FP16 for fastest results
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45, if opt.task == 'speed': # speed benchmarks
device=opt.device, save_json=False, plots=False) # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == 'study': # run over a range of settings and save/plot elif opt.task == 'study': # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) for opt.weights in weights:
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]: f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
y = [] # y axis for opt.imgsz in x: # img-size
for i in x: # img-size LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
LOGGER.info(f'\nRunning {f} point {i}...') r, _, t = run(**vars(opt), plots=False)
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres, y.append(r + t) # results and times
iou_thres=opt.iou_thres, device=opt.device, save_json=opt.save_json, plots=False) np.savetxt(f, y, fmt='%10.4g') # save
y.append(r + t) # results and times os.system('zip -r study.zip study_*.txt')
np.savetxt(f, y, fmt='%10.4g') # save plot_val_study(x=x) # plot
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot
if __name__ == "__main__": if __name__ == "__main__":