Update P2-P7 `models/hub` variants (#6230)
* Update p2-p7 `models/hub` variants * Update common.py * AutoAnchor camelcase correctionspull/6235/head
parent
ad565e31d2
commit
33a67b4918
|
@ -306,7 +306,7 @@ class DetectMultiBackend(nn.Module):
|
|||
|
||||
if pt: # PyTorch
|
||||
model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
|
||||
stride = int(model.stride.max()) # model stride
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
elif jit: # TorchScript
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # auto-anchor evolves 3 anchors per P output layer
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
|
@ -21,7 +21,7 @@ backbone:
|
|||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.50 # layer channel multiple
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
|
||||
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||
[ -1, 3, C3, [ 128 ] ],
|
||||
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||
[ -1, 6, C3, [ 256 ] ],
|
||||
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||
[ -1, 9, C3, [ 512 ] ],
|
||||
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
||||
[ -1, 3, C3, [ 1024 ] ],
|
||||
[ -1, 1, SPPF, [ 1024, 5 ] ], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head with (P3, P4) outputs
|
||||
head:
|
||||
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||
[ -1, 3, C3, [ 512, False ] ], # 13
|
||||
|
||||
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
||||
|
||||
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
|
||||
|
||||
[ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
|
||||
]
|
|
@ -4,7 +4,7 @@
|
|||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # auto-anchor 3 anchors per P output layer
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
|
@ -23,7 +23,7 @@ backbone:
|
|||
[-1, 1, SPPF, [1024, 5]], # 11
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
||||
head:
|
||||
[[-1, 1, Conv, [768, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
anchors: 3 # auto-anchor 3 anchors per P output layer
|
||||
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
|
@ -25,7 +25,7 @@ backbone:
|
|||
[-1, 1, SPPF, [1280, 5]], # 13
|
||||
]
|
||||
|
||||
# YOLOv5 head
|
||||
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
||||
head:
|
||||
[[-1, 1, Conv, [1024, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
|
|
2
train.py
2
train.py
|
@ -461,7 +461,7 @@ def parse_opt(known=False):
|
|||
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
||||
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||||
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
||||
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
||||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
||||
|
|
|
@ -777,7 +777,7 @@
|
|||
"\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n",
|
||||
"Plotting labels... \n",
|
||||
"\n",
|
||||
"\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
|
||||
"\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
|
||||
"Image sizes 640 train, 640 val\n",
|
||||
"Using 2 dataloader workers\n",
|
||||
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
|
||||
|
|
Loading…
Reference in New Issue