Autosplit (#1488)
parent
4798e66fdf
commit
354109c54c
|
@ -904,18 +904,19 @@ def flatten_recursive(path='../coco128'):
|
||||||
shutil.copyfile(file, new_path / Path(file).name)
|
shutil.copyfile(file, new_path / Path(file).name)
|
||||||
|
|
||||||
|
|
||||||
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit()
|
def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
|
||||||
""" Autosplit a dataset into train/val/test splits and save *.txt files
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
||||||
# Arguments
|
# Arguments
|
||||||
path: Path to images directory
|
path: Path to images directory
|
||||||
weights: Train, val, test weights (list)
|
weights: Train, val, test weights (list)
|
||||||
"""
|
"""
|
||||||
path = Path(path) # images dir
|
path = Path(path) # images dir
|
||||||
files = list(path.rglob('*.*'))
|
files = list(path.rglob('*.*'))
|
||||||
indices = random.choices([0, 1, 2], weights=weights, k=len(files)) # assign each image to a split
|
n = len(files) # number of files
|
||||||
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
||||||
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
||||||
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
|
||||||
for i, img in tqdm(zip(indices, files)):
|
for i, img in tqdm(zip(indices, files), total=n):
|
||||||
if img.suffix[1:] in img_formats:
|
if img.suffix[1:] in img_formats:
|
||||||
with open(path / txt[i], 'a') as f:
|
with open(path / txt[i], 'a') as f:
|
||||||
f.write(str(img) + '\n') # add image to txt file
|
f.write(str(img) + '\n') # add image to txt file
|
||||||
|
|
Loading…
Reference in New Issue