mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Explicitly compute TP, FP in val.py (#5727)
This commit is contained in:
parent
eb51ffdcac
commit
36d12a500e
@ -18,7 +18,7 @@ def fitness(x):
|
|||||||
return (x[:, :4] * w).sum(1)
|
return (x[:, :4] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
|
||||||
""" Compute the average precision, given the recall and precision curves.
|
""" Compute the average precision, given the recall and precision curves.
|
||||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||||
# Arguments
|
# Arguments
|
||||||
@ -37,7 +37,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
|||||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||||
|
|
||||||
# Find unique classes
|
# Find unique classes
|
||||||
unique_classes = np.unique(target_cls)
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
||||||
nc = unique_classes.shape[0] # number of classes, number of detections
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
||||||
|
|
||||||
# Create Precision-Recall curve and compute AP for each class
|
# Create Precision-Recall curve and compute AP for each class
|
||||||
@ -45,7 +45,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
|||||||
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
||||||
for ci, c in enumerate(unique_classes):
|
for ci, c in enumerate(unique_classes):
|
||||||
i = pred_cls == c
|
i = pred_cls == c
|
||||||
n_l = (target_cls == c).sum() # number of labels
|
n_l = nt[ci] # number of labels
|
||||||
n_p = i.sum() # number of predictions
|
n_p = i.sum() # number of predictions
|
||||||
|
|
||||||
if n_p == 0 or n_l == 0:
|
if n_p == 0 or n_l == 0:
|
||||||
@ -56,7 +56,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
|||||||
tpc = tp[i].cumsum(0)
|
tpc = tp[i].cumsum(0)
|
||||||
|
|
||||||
# Recall
|
# Recall
|
||||||
recall = tpc / (n_l + 1e-16) # recall curve
|
recall = tpc / (n_l + eps) # recall curve
|
||||||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
||||||
|
|
||||||
# Precision
|
# Precision
|
||||||
@ -70,7 +70,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
|||||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||||
|
|
||||||
# Compute F1 (harmonic mean of precision and recall)
|
# Compute F1 (harmonic mean of precision and recall)
|
||||||
f1 = 2 * p * r / (p + r + 1e-16)
|
f1 = 2 * p * r / (p + r + eps)
|
||||||
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
||||||
names = {i: v for i, v in enumerate(names)} # to dict
|
names = {i: v for i, v in enumerate(names)} # to dict
|
||||||
if plot:
|
if plot:
|
||||||
@ -80,7 +80,10 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
|||||||
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
||||||
|
|
||||||
i = f1.mean(0).argmax() # max F1 index
|
i = f1.mean(0).argmax() # max F1 index
|
||||||
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
||||||
|
tp = (r * nt).round() # true positives
|
||||||
|
fp = (tp / (p + eps) - tp).round() # false positives
|
||||||
|
return tp, fp, p, r, f1, ap, unique_classes.astype('int32')
|
||||||
|
|
||||||
|
|
||||||
def compute_ap(recall, precision):
|
def compute_ap(recall, precision):
|
||||||
@ -162,6 +165,12 @@ class ConfusionMatrix:
|
|||||||
def matrix(self):
|
def matrix(self):
|
||||||
return self.matrix
|
return self.matrix
|
||||||
|
|
||||||
|
def tp_fp(self):
|
||||||
|
tp = self.matrix.diagonal() # true positives
|
||||||
|
fp = self.matrix.sum(1) - tp # false positives
|
||||||
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
||||||
|
return tp[:-1], fp[:-1] # remove background class
|
||||||
|
|
||||||
def plot(self, normalize=True, save_dir='', names=()):
|
def plot(self, normalize=True, save_dir='', names=()):
|
||||||
try:
|
try:
|
||||||
import seaborn as sn
|
import seaborn as sn
|
||||||
|
2
val.py
2
val.py
@ -237,7 +237,7 @@ def run(data,
|
|||||||
# Compute metrics
|
# Compute metrics
|
||||||
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
||||||
if len(stats) and stats[0].any():
|
if len(stats) and stats[0].any():
|
||||||
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||||
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
||||||
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
||||||
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
||||||
|
Loading…
x
Reference in New Issue
Block a user