mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
Improved BGR2RGB speeds (#3880)
* Update BGR2RGB ops * speed improvements * cleanup
This commit is contained in:
parent
9e8fb9fd0b
commit
3c3f8fbd5d
@ -259,7 +259,7 @@ class AutoShape(nn.Module):
|
||||
files.append(Path(f).with_suffix('.jpg').name)
|
||||
if im.shape[0] < 5: # image in CHW
|
||||
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
||||
s = im.shape[:2] # HWC
|
||||
shape0.append(s) # image shape
|
||||
g = (size / max(s)) # gain
|
||||
|
@ -218,7 +218,7 @@ class LoadImages: # for inference
|
||||
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
|
||||
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return path, img, img0, self.cap
|
||||
@ -264,7 +264,7 @@ class LoadWebcam: # for inference
|
||||
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW
|
||||
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return img_path, img, img0, None
|
||||
@ -345,7 +345,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
||||
img = np.stack(img, 0)
|
||||
|
||||
# Convert
|
||||
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and BHWC to BCHW
|
||||
img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return self.sources, img, img0, None
|
||||
@ -526,7 +526,6 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
if random.random() < hyp['mixup']:
|
||||
img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))
|
||||
|
||||
|
||||
else:
|
||||
# Load image
|
||||
img, (h0, w0), (h, w) = load_image(self, index)
|
||||
@ -579,7 +578,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3 x img_height x img_width
|
||||
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
||||
|
Loading…
x
Reference in New Issue
Block a user