Parameterize max_det + inference default at 1000 (#3215)
* Added max_det parameters in various places * 120 character line * PEP8 * 120 character line * Update inference default to 1000 instances * Update inference default to 1000 instances Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/3217/head
parent
13a1c72699
commit
3f74cd9ed1
|
@ -68,7 +68,8 @@ def detect(opt):
|
|||
pred = model(img, augment=opt.augment)[0]
|
||||
|
||||
# Apply NMS
|
||||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
||||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms,
|
||||
max_det=opt.max_det)
|
||||
t2 = time_synchronized()
|
||||
|
||||
# Apply Classifier
|
||||
|
@ -153,6 +154,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||
parser.add_argument('--max-det', type=int, default=1000, help='maximum number of detections per image')
|
||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--view-img', action='store_true', help='display results')
|
||||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||
|
|
|
@ -215,12 +215,13 @@ class NMS(nn.Module):
|
|||
conf = 0.25 # confidence threshold
|
||||
iou = 0.45 # IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
max_det = 1000 # maximum number of detections per image
|
||||
|
||||
def __init__(self):
|
||||
super(NMS, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||
return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)
|
||||
|
||||
|
||||
class AutoShape(nn.Module):
|
||||
|
@ -228,6 +229,7 @@ class AutoShape(nn.Module):
|
|||
conf = 0.25 # NMS confidence threshold
|
||||
iou = 0.45 # NMS IoU threshold
|
||||
classes = None # (optional list) filter by class
|
||||
max_det = 1000 # maximum number of detections per image
|
||||
|
||||
def __init__(self, model):
|
||||
super(AutoShape, self).__init__()
|
||||
|
@ -285,7 +287,7 @@ class AutoShape(nn.Module):
|
|||
t.append(time_synchronized())
|
||||
|
||||
# Post-process
|
||||
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
|
||||
for i in range(n):
|
||||
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||
|
||||
|
|
|
@ -482,7 +482,7 @@ def wh_iou(wh1, wh2):
|
|||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
||||
labels=()):
|
||||
labels=(), max_det=300):
|
||||
"""Runs Non-Maximum Suppression (NMS) on inference results
|
||||
|
||||
Returns:
|
||||
|
@ -498,7 +498,6 @@ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=Non
|
|||
|
||||
# Settings
|
||||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||
max_det = 300 # maximum number of detections per image
|
||||
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||
time_limit = 10.0 # seconds to quit after
|
||||
redundant = True # require redundant detections
|
||||
|
|
Loading…
Reference in New Issue