PyTorch 1.6.0 compatability updates
parent
7f8471eaeb
commit
43a616a955
|
@ -154,7 +154,7 @@ if __name__ == '__main__':
|
|||
|
||||
with torch.no_grad():
|
||||
if opt.update: # update all models (to fix SourceChangeWarning)
|
||||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
|
||||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||
detect()
|
||||
strip_optimizer(opt.weights)
|
||||
else:
|
||||
|
|
|
@ -90,9 +90,9 @@ class Model(nn.Module):
|
|||
yi = self.forward_once(xi)[0] # forward
|
||||
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||
yi[..., :4] /= si # de-scale
|
||||
if fi is 2:
|
||||
if fi == 2:
|
||||
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
||||
elif fi is 3:
|
||||
elif fi == 3:
|
||||
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
||||
y.append(yi)
|
||||
return torch.cat(y, 1), None # augmented inference, train
|
||||
|
@ -148,6 +148,7 @@ class Model(nn.Module):
|
|||
print('Fusing layers... ', end='')
|
||||
for m in self.model.modules():
|
||||
if type(m) is Conv:
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
||||
m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
m.bn = None # remove batchnorm
|
||||
m.forward = m.fuseforward # update forward
|
||||
|
|
6
test.py
6
test.py
|
@ -148,8 +148,8 @@ def test(data,
|
|||
|
||||
# Per target class
|
||||
for cls in torch.unique(tcls_tensor):
|
||||
ti = (cls == tcls_tensor).nonzero().view(-1) # prediction indices
|
||||
pi = (cls == pred[:, 5]).nonzero().view(-1) # target indices
|
||||
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
||||
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
||||
|
||||
# Search for detections
|
||||
if pi.shape[0]:
|
||||
|
@ -157,7 +157,7 @@ def test(data,
|
|||
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
|
||||
|
||||
# Append detections
|
||||
for j in (ious > iouv[0]).nonzero():
|
||||
for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
||||
d = ti[i[j]] # detected target
|
||||
if d not in detected:
|
||||
detected.append(d)
|
||||
|
|
Loading…
Reference in New Issue