Refactor `export.py` (#4080)
* Refactor `export.py` * cleanup * Update check_requirements() * Update export.pypull/4089/head
parent
0cc7c58787
commit
442a7abdf2
148
export.py
148
export.py
|
@ -24,6 +24,78 @@ from utils.general import colorstr, check_img_size, check_requirements, file_siz
|
|||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
def export_torchscript(model, img, file, optimize):
|
||||
# TorchScript model export
|
||||
prefix = colorstr('TorchScript:')
|
||||
try:
|
||||
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||
f = file.with_suffix('.torchscript.pt')
|
||||
ts = torch.jit.trace(model, img, strict=False)
|
||||
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
return ts
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_onnx(model, img, file, opset_version, train, dynamic, simplify):
|
||||
# ONNX model export
|
||||
prefix = colorstr('ONNX:')
|
||||
try:
|
||||
check_requirements(('onnx', 'onnx-simplifier'))
|
||||
import onnx
|
||||
|
||||
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
||||
f = file.with_suffix('.onnx')
|
||||
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
|
||||
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
||||
do_constant_folding=not train,
|
||||
input_names=['images'],
|
||||
output_names=['output'],
|
||||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
||||
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||||
} if dynamic else None)
|
||||
|
||||
# Checks
|
||||
model_onnx = onnx.load(f) # load onnx model
|
||||
onnx.checker.check_model(model_onnx) # check onnx model
|
||||
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
||||
|
||||
# Simplify
|
||||
if simplify:
|
||||
try:
|
||||
import onnxsim
|
||||
|
||||
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||||
model_onnx, check = onnxsim.simplify(
|
||||
model_onnx,
|
||||
dynamic_input_shape=dynamic,
|
||||
input_shapes={'images': list(img.shape)} if dynamic else None)
|
||||
assert check, 'assert check failed'
|
||||
onnx.save(model_onnx, f)
|
||||
except Exception as e:
|
||||
print(f'{prefix} simplifier failure: {e}')
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def export_coreml(ts_model, img, file, train):
|
||||
# CoreML model export
|
||||
prefix = colorstr('CoreML:')
|
||||
try:
|
||||
import coremltools as ct
|
||||
|
||||
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
||||
f = file.with_suffix('.mlmodel')
|
||||
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
||||
model = ct.convert(ts_model, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||
model.save(f)
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
|
||||
def run(weights='./yolov5s.pt', # weights path
|
||||
img_size=(640, 640), # image (height, width)
|
||||
batch_size=1, # batch size
|
||||
|
@ -40,12 +112,13 @@ def run(weights='./yolov5s.pt', # weights path
|
|||
t = time.time()
|
||||
include = [x.lower() for x in include]
|
||||
img_size *= 2 if len(img_size) == 1 else 1 # expand
|
||||
file = Path(weights)
|
||||
|
||||
# Load PyTorch model
|
||||
device = select_device(device)
|
||||
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
|
||||
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||
labels = model.names
|
||||
names = model.names
|
||||
|
||||
# Input
|
||||
gs = int(max(model.stride)) # grid size (max stride)
|
||||
|
@ -57,7 +130,6 @@ def run(weights='./yolov5s.pt', # weights path
|
|||
img, model = img.half(), model.half() # to FP16
|
||||
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
||||
for k, m in model.named_modules():
|
||||
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||
if isinstance(m, Conv): # assign export-friendly activations
|
||||
if isinstance(m.act, nn.Hardswish):
|
||||
m.act = Hardswish()
|
||||
|
@ -72,73 +144,13 @@ def run(weights='./yolov5s.pt', # weights path
|
|||
y = model(img) # dry runs
|
||||
print(f"\n{colorstr('PyTorch:')} starting from {weights} ({file_size(weights):.1f} MB)")
|
||||
|
||||
# TorchScript export -----------------------------------------------------------------------------------------------
|
||||
if 'torchscript' in include or 'coreml' in include:
|
||||
prefix = colorstr('TorchScript:')
|
||||
try:
|
||||
print(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||
f = weights.replace('.pt', '.torchscript.pt') # filename
|
||||
ts = torch.jit.trace(model, img, strict=False)
|
||||
(optimize_for_mobile(ts) if optimize else ts).save(f)
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
# ONNX export ------------------------------------------------------------------------------------------------------
|
||||
# Exports
|
||||
if 'onnx' in include:
|
||||
prefix = colorstr('ONNX:')
|
||||
try:
|
||||
import onnx
|
||||
|
||||
print(f'{prefix} starting export with onnx {onnx.__version__}...')
|
||||
f = weights.replace('.pt', '.onnx') # filename
|
||||
torch.onnx.export(model, img, f, verbose=False, opset_version=opset_version,
|
||||
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
||||
do_constant_folding=not train,
|
||||
input_names=['images'],
|
||||
output_names=['output'],
|
||||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640)
|
||||
'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||||
} if dynamic else None)
|
||||
|
||||
# Checks
|
||||
model_onnx = onnx.load(f) # load onnx model
|
||||
onnx.checker.check_model(model_onnx) # check onnx model
|
||||
# print(onnx.helper.printable_graph(model_onnx.graph)) # print
|
||||
|
||||
# Simplify
|
||||
if simplify:
|
||||
try:
|
||||
check_requirements(['onnx-simplifier'])
|
||||
import onnxsim
|
||||
|
||||
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||||
model_onnx, check = onnxsim.simplify(
|
||||
model_onnx,
|
||||
dynamic_input_shape=dynamic,
|
||||
input_shapes={'images': list(img.shape)} if dynamic else None)
|
||||
assert check, 'assert check failed'
|
||||
onnx.save(model_onnx, f)
|
||||
except Exception as e:
|
||||
print(f'{prefix} simplifier failure: {e}')
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
|
||||
# CoreML export ----------------------------------------------------------------------------------------------------
|
||||
if 'coreml' in include:
|
||||
prefix = colorstr('CoreML:')
|
||||
try:
|
||||
import coremltools as ct
|
||||
|
||||
print(f'{prefix} starting export with coremltools {ct.__version__}...')
|
||||
assert train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
|
||||
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||
f = weights.replace('.pt', '.mlmodel') # filename
|
||||
model.save(f)
|
||||
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
||||
except Exception as e:
|
||||
print(f'{prefix} export failure: {e}')
|
||||
export_onnx(model, img, file, opset_version, train, dynamic, simplify)
|
||||
if 'torchscript' in include or 'coreml' in include:
|
||||
ts = export_torchscript(model, img, file, optimize)
|
||||
if 'coreml' in include:
|
||||
export_coreml(ts, img, file, train)
|
||||
|
||||
# Finish
|
||||
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
|
||||
|
|
Loading…
Reference in New Issue