mirror of
https://github.com/ultralytics/yolov5.git
synced 2025-06-03 14:49:29 +08:00
changed prints to logging in utils/datasets (#1315)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
7aeef2dca5
commit
44f42b1589
@ -1,6 +1,7 @@
|
|||||||
# Dataset utils and dataloaders
|
# Dataset utils and dataloaders
|
||||||
|
|
||||||
import glob
|
import glob
|
||||||
|
import logging
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
@ -21,6 +22,8 @@ from tqdm import tqdm
|
|||||||
from utils.general import xyxy2xywh, xywh2xyxy
|
from utils.general import xyxy2xywh, xywh2xyxy
|
||||||
from utils.torch_utils import torch_distributed_zero_first
|
from utils.torch_utils import torch_distributed_zero_first
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
# Parameters
|
# Parameters
|
||||||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||||
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
|
||||||
@ -165,14 +168,14 @@ class LoadImages: # for inference
|
|||||||
ret_val, img0 = self.cap.read()
|
ret_val, img0 = self.cap.read()
|
||||||
|
|
||||||
self.frame += 1
|
self.frame += 1
|
||||||
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
logger.debug('video %g/%g (%g/%g) %s: ', self.count + 1, self.nf, self.frame, self.nframes, path)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Read image
|
# Read image
|
||||||
self.count += 1
|
self.count += 1
|
||||||
img0 = cv2.imread(path) # BGR
|
img0 = cv2.imread(path) # BGR
|
||||||
assert img0 is not None, 'Image Not Found ' + path
|
assert img0 is not None, 'Image Not Found ' + path
|
||||||
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
logger.debug('image %g/%g %s: ', self.count, self.nf, path)
|
||||||
|
|
||||||
# Padded resize
|
# Padded resize
|
||||||
img = letterbox(img0, new_shape=self.img_size)[0]
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||||
@ -234,7 +237,7 @@ class LoadWebcam: # for inference
|
|||||||
# Print
|
# Print
|
||||||
assert ret_val, 'Camera Error %s' % self.pipe
|
assert ret_val, 'Camera Error %s' % self.pipe
|
||||||
img_path = 'webcam.jpg'
|
img_path = 'webcam.jpg'
|
||||||
print('webcam %g: ' % self.count, end='')
|
logger.debug('webcam %g: ', self.count)
|
||||||
|
|
||||||
# Padded resize
|
# Padded resize
|
||||||
img = letterbox(img0, new_shape=self.img_size)[0]
|
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||||
@ -265,7 +268,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||||||
self.sources = sources
|
self.sources = sources
|
||||||
for i, s in enumerate(sources):
|
for i, s in enumerate(sources):
|
||||||
# Start the thread to read frames from the video stream
|
# Start the thread to read frames from the video stream
|
||||||
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
logger.debug('%g/%g: %s... ', i + 1, n, s)
|
||||||
cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
|
cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
|
||||||
assert cap.isOpened(), 'Failed to open %s' % s
|
assert cap.isOpened(), 'Failed to open %s' % s
|
||||||
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
@ -273,15 +276,14 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||||||
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
||||||
_, self.imgs[i] = cap.read() # guarantee first frame
|
_, self.imgs[i] = cap.read() # guarantee first frame
|
||||||
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
||||||
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
logger.debug(' success (%gx%g at %.2f FPS).', w, h, fps)
|
||||||
thread.start()
|
thread.start()
|
||||||
print('') # newline
|
|
||||||
|
|
||||||
# check for common shapes
|
# check for common shapes
|
||||||
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
||||||
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
||||||
if not self.rect:
|
if not self.rect:
|
||||||
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
logger.warning('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
||||||
|
|
||||||
def update(self, index, cap):
|
def update(self, index, cap):
|
||||||
# Read next stream frame in a daemon thread
|
# Read next stream frame in a daemon thread
|
||||||
@ -418,7 +420,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||||||
assert (l >= 0).all(), 'negative labels: %s' % file
|
assert (l >= 0).all(), 'negative labels: %s' % file
|
||||||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
||||||
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
||||||
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
|
nd += 1 # logger.warning('WARNING: duplicate rows in %s', self.label_files[i]) # duplicate rows
|
||||||
if single_cls:
|
if single_cls:
|
||||||
l[:, 0] = 0 # force dataset into single-class mode
|
l[:, 0] = 0 # force dataset into single-class mode
|
||||||
self.labels[i] = l
|
self.labels[i] = l
|
||||||
@ -455,7 +457,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||||||
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
||||||
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
|
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
|
||||||
else:
|
else:
|
||||||
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
ne += 1 # logger.info('empty labels for image %s', self.img_files[i]) # file empty
|
||||||
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
||||||
|
|
||||||
if rank in [-1, 0]:
|
if rank in [-1, 0]:
|
||||||
@ -463,7 +465,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||||||
cache_path, nf, nm, ne, nd, n)
|
cache_path, nf, nm, ne, nd, n)
|
||||||
if nf == 0:
|
if nf == 0:
|
||||||
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
||||||
print(s)
|
logger.info(s)
|
||||||
assert not augment, '%s. Can not train without labels.' % s
|
assert not augment, '%s. Can not train without labels.' % s
|
||||||
|
|
||||||
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||||
@ -496,7 +498,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||||||
l = np.zeros((0, 5), dtype=np.float32)
|
l = np.zeros((0, 5), dtype=np.float32)
|
||||||
x[img] = [l, shape]
|
x[img] = [l, shape]
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print('WARNING: Ignoring corrupted image and/or label %s: %s' % (img, e))
|
logger.warning('WARNING: Ignoring corrupted image and/or label %s: %s', img, e)
|
||||||
|
|
||||||
x['hash'] = get_hash(self.label_files + self.img_files)
|
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||||
torch.save(x, path) # save for next time
|
torch.save(x, path) # save for next time
|
||||||
@ -507,7 +509,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||||||
|
|
||||||
# def __iter__(self):
|
# def __iter__(self):
|
||||||
# self.count = -1
|
# self.count = -1
|
||||||
# print('ran dataset iter')
|
# logger.info('ran dataset iter')
|
||||||
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||||
# return self
|
# return self
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user