Increment train, test, detect runs/ (#1322)
* Increment train, test, detect runs/ * Update ci-testing.yml * inference/images to data/images * move images * runs/exp to runs/train/exp * update 'results saved to %s' strpull/1323/head
parent
d3e7778151
commit
4821d076e2
|
@ -66,10 +66,10 @@ jobs:
|
||||||
python train.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di
|
python train.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di
|
||||||
# detect
|
# detect
|
||||||
python detect.py --weights weights/${{ matrix.model }}.pt --device $di
|
python detect.py --weights weights/${{ matrix.model }}.pt --device $di
|
||||||
python detect.py --weights runs/exp0/weights/last.pt --device $di
|
python detect.py --weights runs/train/exp0/weights/last.pt --device $di
|
||||||
# test
|
# test
|
||||||
python test.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --device $di
|
python test.py --img 256 --batch 8 --weights weights/${{ matrix.model }}.pt --device $di
|
||||||
python test.py --img 256 --batch 8 --weights runs/exp0/weights/last.pt --device $di
|
python test.py --img 256 --batch 8 --weights runs/train/exp0/weights/last.pt --device $di
|
||||||
|
|
||||||
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect
|
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect
|
||||||
python models/export.py --img 256 --batch 1 --weights weights/${{ matrix.model }}.pt # export
|
python models/export.py --img 256 --batch 1 --weights weights/${{ matrix.model }}.pt # export
|
||||||
|
|
|
@ -26,8 +26,8 @@
|
||||||
storage.googleapis.com
|
storage.googleapis.com
|
||||||
runs/*
|
runs/*
|
||||||
data/*
|
data/*
|
||||||
!data/samples/zidane.jpg
|
!data/images/zidane.jpg
|
||||||
!data/samples/bus.jpg
|
!data/images/bus.jpg
|
||||||
!data/coco.names
|
!data/coco.names
|
||||||
!data/coco_paper.names
|
!data/coco_paper.names
|
||||||
!data/coco.data
|
!data/coco.data
|
||||||
|
|
|
@ -46,7 +46,7 @@ COPY . /usr/src/app
|
||||||
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
|
# sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
|
||||||
|
|
||||||
# Send weights to GCP
|
# Send weights to GCP
|
||||||
# python -c "from utils.general import *; strip_optimizer('runs/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
||||||
|
|
||||||
# Clean up
|
# Clean up
|
||||||
# docker system prune -a --volumes
|
# docker system prune -a --volumes
|
||||||
|
|
14
README.md
14
README.md
|
@ -70,7 +70,7 @@ YOLOv5 may be run in any of the following up-to-date verified environments (with
|
||||||
|
|
||||||
## Inference
|
## Inference
|
||||||
|
|
||||||
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `inference/output`.
|
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
||||||
```bash
|
```bash
|
||||||
$ python detect.py --source 0 # webcam
|
$ python detect.py --source 0 # webcam
|
||||||
file.jpg # image
|
file.jpg # image
|
||||||
|
@ -82,20 +82,20 @@ $ python detect.py --source 0 # webcam
|
||||||
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
|
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
|
||||||
```
|
```
|
||||||
|
|
||||||
To run inference on example images in `inference/images`:
|
To run inference on example images in `data/images`:
|
||||||
```bash
|
```bash
|
||||||
$ python detect.py --source inference/images --weights yolov5s.pt --conf 0.25
|
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
|
||||||
|
|
||||||
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='inference/output', save_conf=False, save_txt=False, source='inference/images', update=False, view_img=False, weights='yolov5s.pt')
|
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='runs/detect', save_conf=False, save_txt=False, source='data/images', update=False, view_img=False, weights='yolov5s.pt')
|
||||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16160MB)
|
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16160MB)
|
||||||
|
|
||||||
Downloading https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
|
Downloading https://github.com/ultralytics/yolov5/releases/download/v3.0/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
|
||||||
|
|
||||||
Fusing layers...
|
Fusing layers...
|
||||||
Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients
|
Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients
|
||||||
image 1/2 yolov5/inference/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.013s)
|
image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.013s)
|
||||||
image 2/2 yolov5/inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)
|
image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)
|
||||||
Results saved to yolov5/inference/output
|
Results saved to runs/detect/exp0
|
||||||
Done. (0.124s)
|
Done. (0.124s)
|
||||||
```
|
```
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
|
<img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500">
|
||||||
|
|
Before Width: | Height: | Size: 476 KiB After Width: | Height: | Size: 476 KiB |
Before Width: | Height: | Size: 165 KiB After Width: | Height: | Size: 165 KiB |
38
detect.py
38
detect.py
|
@ -1,6 +1,5 @@
|
||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import shutil
|
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -11,23 +10,25 @@ from numpy import random
|
||||||
|
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from utils.datasets import LoadStreams, LoadImages
|
from utils.datasets import LoadStreams, LoadImages
|
||||||
from utils.general import (
|
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
|
||||||
check_img_size, non_max_suppression, apply_classifier, scale_coords,
|
plot_one_box, strip_optimizer, set_logging, increment_dir
|
||||||
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
|
|
||||||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
def detect(save_img=False):
|
def detect(save_img=False):
|
||||||
out, source, weights, view_img, save_txt, imgsz = \
|
save_dir, source, weights, view_img, save_txt, imgsz = \
|
||||||
opt.save_dir, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
Path(opt.save_dir), opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||||||
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')
|
webcam = source.isnumeric() or source.startswith(('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
if save_dir == Path('runs/detect'): # if default
|
||||||
|
os.makedirs('runs/detect', exist_ok=True) # make base
|
||||||
|
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run
|
||||||
|
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir
|
||||||
|
|
||||||
# Initialize
|
# Initialize
|
||||||
set_logging()
|
set_logging()
|
||||||
device = select_device(opt.device)
|
device = select_device(opt.device)
|
||||||
if os.path.exists(out): # output dir
|
|
||||||
shutil.rmtree(out) # delete dir
|
|
||||||
os.makedirs(out) # make new dir
|
|
||||||
half = device.type != 'cpu' # half precision only supported on CUDA
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
|
||||||
# Load model
|
# Load model
|
||||||
|
@ -83,12 +84,12 @@ def detect(save_img=False):
|
||||||
# Process detections
|
# Process detections
|
||||||
for i, det in enumerate(pred): # detections per image
|
for i, det in enumerate(pred): # detections per image
|
||||||
if webcam: # batch_size >= 1
|
if webcam: # batch_size >= 1
|
||||||
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
|
p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
|
||||||
else:
|
else:
|
||||||
p, s, im0 = path, '', im0s
|
p, s, im0 = Path(path), '', im0s
|
||||||
|
|
||||||
save_path = str(Path(out) / Path(p).name)
|
save_path = str(save_dir / p.name)
|
||||||
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
|
txt_path = str(save_dir / 'labels' / p.stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
|
||||||
s += '%gx%g ' % img.shape[2:] # print string
|
s += '%gx%g ' % img.shape[2:] # print string
|
||||||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
if det is not None and len(det):
|
if det is not None and len(det):
|
||||||
|
@ -104,7 +105,7 @@ def detect(save_img=False):
|
||||||
for *xyxy, conf, cls in reversed(det):
|
for *xyxy, conf, cls in reversed(det):
|
||||||
if save_txt: # Write to file
|
if save_txt: # Write to file
|
||||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
line = (cls, conf, *xywh) if opt.save_conf else (cls, *xywh) # label format
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
||||||
with open(txt_path + '.txt', 'a') as f:
|
with open(txt_path + '.txt', 'a') as f:
|
||||||
f.write(('%g ' * len(line) + '\n') % line)
|
f.write(('%g ' * len(line) + '\n') % line)
|
||||||
|
|
||||||
|
@ -139,7 +140,7 @@ def detect(save_img=False):
|
||||||
vid_writer.write(im0)
|
vid_writer.write(im0)
|
||||||
|
|
||||||
if save_txt or save_img:
|
if save_txt or save_img:
|
||||||
print('Results saved to %s' % Path(out))
|
print('Results saved to %s' % save_dir)
|
||||||
|
|
||||||
print('Done. (%.3fs)' % (time.time() - t0))
|
print('Done. (%.3fs)' % (time.time() - t0))
|
||||||
|
|
||||||
|
@ -147,15 +148,16 @@ def detect(save_img=False):
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
||||||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
|
||||||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||||||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
parser.add_argument('--view-img', action='store_true', help='display results')
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
||||||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
parser.add_argument('--save-txt', action='store_false', help='save results to *.txt')
|
||||||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
parser.add_argument('--save-dir', type=str, default='inference/output', help='directory to save results')
|
parser.add_argument('--save-dir', type=str, default='runs/detect', help='directory to save results')
|
||||||
|
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}')
|
||||||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||||||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||||
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
|
|
@ -113,6 +113,6 @@ if __name__ == '__main__':
|
||||||
# Verify inference
|
# Verify inference
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
img = Image.open('inference/images/zidane.jpg')
|
img = Image.open('data/images/zidane.jpg')
|
||||||
y = model(img)
|
y = model(img)
|
||||||
print(y[0].shape)
|
print(y[0].shape)
|
||||||
|
|
307
sotabench.py
307
sotabench.py
|
@ -1,307 +0,0 @@
|
||||||
import argparse
|
|
||||||
import glob
|
|
||||||
import os
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import yaml
|
|
||||||
from sotabencheval.object_detection import COCOEvaluator
|
|
||||||
from sotabencheval.utils import is_server
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
from models.experimental import attempt_load
|
|
||||||
from utils.datasets import create_dataloader
|
|
||||||
from utils.general import (
|
|
||||||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
|
|
||||||
xyxy2xywh, clip_coords, set_logging)
|
|
||||||
from utils.torch_utils import select_device, time_synchronized
|
|
||||||
|
|
||||||
DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' # sotabench data dir
|
|
||||||
|
|
||||||
|
|
||||||
def test(data,
|
|
||||||
weights=None,
|
|
||||||
batch_size=16,
|
|
||||||
imgsz=640,
|
|
||||||
conf_thres=0.001,
|
|
||||||
iou_thres=0.6, # for NMS
|
|
||||||
save_json=False,
|
|
||||||
single_cls=False,
|
|
||||||
augment=False,
|
|
||||||
verbose=False,
|
|
||||||
model=None,
|
|
||||||
dataloader=None,
|
|
||||||
save_dir='',
|
|
||||||
merge=False,
|
|
||||||
save_txt=False):
|
|
||||||
# Initialize/load model and set device
|
|
||||||
training = model is not None
|
|
||||||
if training: # called by train.py
|
|
||||||
device = next(model.parameters()).device # get model device
|
|
||||||
|
|
||||||
else: # called directly
|
|
||||||
set_logging()
|
|
||||||
device = select_device(opt.device, batch_size=batch_size)
|
|
||||||
merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
|
|
||||||
if save_txt:
|
|
||||||
out = Path('inference/output')
|
|
||||||
if os.path.exists(out):
|
|
||||||
shutil.rmtree(out) # delete output folder
|
|
||||||
os.makedirs(out) # make new output folder
|
|
||||||
|
|
||||||
# Remove previous
|
|
||||||
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
|
|
||||||
os.remove(f)
|
|
||||||
|
|
||||||
# Load model
|
|
||||||
model = attempt_load(weights, map_location=device) # load FP32 model
|
|
||||||
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
|
||||||
|
|
||||||
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
|
||||||
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
|
||||||
# model = nn.DataParallel(model)
|
|
||||||
|
|
||||||
# Half
|
|
||||||
half = device.type != 'cpu' # half precision only supported on CUDA
|
|
||||||
if half:
|
|
||||||
model.half()
|
|
||||||
|
|
||||||
# Configure
|
|
||||||
model.eval()
|
|
||||||
with open(data) as f:
|
|
||||||
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
|
||||||
check_dataset(data) # check
|
|
||||||
nc = 1 if single_cls else int(data['nc']) # number of classes
|
|
||||||
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
|
||||||
niou = iouv.numel()
|
|
||||||
|
|
||||||
# Dataloader
|
|
||||||
if not training:
|
|
||||||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
||||||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
||||||
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
|
|
||||||
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
|
|
||||||
hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0]
|
|
||||||
|
|
||||||
seen = 0
|
|
||||||
names = model.names if hasattr(model, 'names') else model.module.names
|
|
||||||
coco91class = coco80_to_coco91_class()
|
|
||||||
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
|
||||||
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
|
||||||
loss = torch.zeros(3, device=device)
|
|
||||||
jdict, stats, ap, ap_class = [], [], [], []
|
|
||||||
evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', ''))
|
|
||||||
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
|
||||||
img = img.to(device, non_blocking=True)
|
|
||||||
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
||||||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
||||||
targets = targets.to(device)
|
|
||||||
nb, _, height, width = img.shape # batch size, channels, height, width
|
|
||||||
whwh = torch.Tensor([width, height, width, height]).to(device)
|
|
||||||
|
|
||||||
# Disable gradients
|
|
||||||
with torch.no_grad():
|
|
||||||
# Run model
|
|
||||||
t = time_synchronized()
|
|
||||||
inf_out, train_out = model(img, augment=augment) # inference and training outputs
|
|
||||||
t0 += time_synchronized() - t
|
|
||||||
|
|
||||||
# Compute loss
|
|
||||||
if training: # if model has loss hyperparameters
|
|
||||||
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
|
|
||||||
|
|
||||||
# Run NMS
|
|
||||||
t = time_synchronized()
|
|
||||||
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
|
|
||||||
t1 += time_synchronized() - t
|
|
||||||
|
|
||||||
# Statistics per image
|
|
||||||
for si, pred in enumerate(output):
|
|
||||||
labels = targets[targets[:, 0] == si, 1:]
|
|
||||||
nl = len(labels)
|
|
||||||
tcls = labels[:, 0].tolist() if nl else [] # target class
|
|
||||||
seen += 1
|
|
||||||
|
|
||||||
if pred is None:
|
|
||||||
if nl:
|
|
||||||
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Append to text file
|
|
||||||
if save_txt:
|
|
||||||
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
|
||||||
x = pred.clone()
|
|
||||||
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
|
|
||||||
for *xyxy, conf, cls in x:
|
|
||||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
|
||||||
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
|
|
||||||
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
|
||||||
|
|
||||||
# Clip boxes to image bounds
|
|
||||||
clip_coords(pred, (height, width))
|
|
||||||
|
|
||||||
# Append to pycocotools JSON dictionary
|
|
||||||
if save_json:
|
|
||||||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
||||||
image_id = Path(paths[si]).stem
|
|
||||||
box = pred[:, :4].clone() # xyxy
|
|
||||||
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
|
||||||
box = xyxy2xywh(box) # xywh
|
|
||||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
||||||
for p, b in zip(pred.tolist(), box.tolist()):
|
|
||||||
result = {'image_id': int(image_id) if image_id.isnumeric() else image_id,
|
|
||||||
'category_id': coco91class[int(p[5])],
|
|
||||||
'bbox': [round(x, 3) for x in b],
|
|
||||||
'score': round(p[4], 5)}
|
|
||||||
jdict.append(result)
|
|
||||||
|
|
||||||
#evaluator.add([result])
|
|
||||||
#if evaluator.cache_exists:
|
|
||||||
# break
|
|
||||||
|
|
||||||
# # Assign all predictions as incorrect
|
|
||||||
# correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
|
||||||
# if nl:
|
|
||||||
# detected = [] # target indices
|
|
||||||
# tcls_tensor = labels[:, 0]
|
|
||||||
#
|
|
||||||
# # target boxes
|
|
||||||
# tbox = xywh2xyxy(labels[:, 1:5]) * whwh
|
|
||||||
#
|
|
||||||
# # Per target class
|
|
||||||
# for cls in torch.unique(tcls_tensor):
|
|
||||||
# ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
|
||||||
# pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
|
||||||
#
|
|
||||||
# # Search for detections
|
|
||||||
# if pi.shape[0]:
|
|
||||||
# # Prediction to target ious
|
|
||||||
# ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
|
|
||||||
#
|
|
||||||
# # Append detections
|
|
||||||
# detected_set = set()
|
|
||||||
# for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
|
||||||
# d = ti[i[j]] # detected target
|
|
||||||
# if d.item() not in detected_set:
|
|
||||||
# detected_set.add(d.item())
|
|
||||||
# detected.append(d)
|
|
||||||
# correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
|
||||||
# if len(detected) == nl: # all targets already located in image
|
|
||||||
# break
|
|
||||||
#
|
|
||||||
# # Append statistics (correct, conf, pcls, tcls)
|
|
||||||
# stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
|
||||||
|
|
||||||
# # Plot images
|
|
||||||
# if batch_i < 1:
|
|
||||||
# f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
|
|
||||||
# plot_images(img, targets, paths, str(f), names) # ground truth
|
|
||||||
# f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
|
|
||||||
# plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions
|
|
||||||
|
|
||||||
evaluator.add(jdict)
|
|
||||||
evaluator.save()
|
|
||||||
|
|
||||||
# # Compute statistics
|
|
||||||
# stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
|
||||||
# if len(stats) and stats[0].any():
|
|
||||||
# p, r, ap, f1, ap_class = ap_per_class(*stats)
|
|
||||||
# p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
|
|
||||||
# mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
|
||||||
# nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
|
||||||
# else:
|
|
||||||
# nt = torch.zeros(1)
|
|
||||||
#
|
|
||||||
# # Print results
|
|
||||||
# pf = '%20s' + '%12.3g' * 6 # print format
|
|
||||||
# print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
|
||||||
#
|
|
||||||
# # Print results per class
|
|
||||||
# if verbose and nc > 1 and len(stats):
|
|
||||||
# for i, c in enumerate(ap_class):
|
|
||||||
# print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
|
||||||
#
|
|
||||||
# # Print speeds
|
|
||||||
# t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
|
||||||
# if not training:
|
|
||||||
# print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
|
||||||
#
|
|
||||||
# # Save JSON
|
|
||||||
# if save_json and len(jdict):
|
|
||||||
# f = 'detections_val2017_%s_results.json' % \
|
|
||||||
# (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
|
|
||||||
# print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
|
||||||
# with open(f, 'w') as file:
|
|
||||||
# json.dump(jdict, file)
|
|
||||||
#
|
|
||||||
# try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
|
||||||
# from pycocotools.coco import COCO
|
|
||||||
# from pycocotools.cocoeval import COCOeval
|
|
||||||
#
|
|
||||||
# imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
|
|
||||||
# cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
|
|
||||||
# cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
|
|
||||||
# cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
||||||
# cocoEval.params.imgIds = imgIds # image IDs to evaluate
|
|
||||||
# cocoEval.evaluate()
|
|
||||||
# cocoEval.accumulate()
|
|
||||||
# cocoEval.summarize()
|
|
||||||
# map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
|
||||||
# except Exception as e:
|
|
||||||
# print('ERROR: pycocotools unable to run: %s' % e)
|
|
||||||
#
|
|
||||||
# # Return results
|
|
||||||
# model.float() # for training
|
|
||||||
# maps = np.zeros(nc) + map
|
|
||||||
# for i, c in enumerate(ap_class):
|
|
||||||
# maps[c] = ap[i]
|
|
||||||
# return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
parser = argparse.ArgumentParser(prog='test.py')
|
|
||||||
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
|
||||||
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
|
|
||||||
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
|
||||||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
||||||
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
|
||||||
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
|
|
||||||
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
|
||||||
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
|
|
||||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
||||||
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
|
||||||
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
||||||
parser.add_argument('--merge', action='store_true', help='use Merge NMS')
|
|
||||||
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
|
||||||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
||||||
opt = parser.parse_args()
|
|
||||||
opt.save_json |= opt.data.endswith('coco.yaml')
|
|
||||||
opt.data = check_file(opt.data) # check file
|
|
||||||
print(opt)
|
|
||||||
|
|
||||||
if opt.task in ['val', 'test']: # run normally
|
|
||||||
test(opt.data,
|
|
||||||
opt.weights,
|
|
||||||
opt.batch_size,
|
|
||||||
opt.img_size,
|
|
||||||
opt.conf_thres,
|
|
||||||
opt.iou_thres,
|
|
||||||
opt.save_json,
|
|
||||||
opt.single_cls,
|
|
||||||
opt.augment,
|
|
||||||
opt.verbose)
|
|
||||||
|
|
||||||
elif opt.task == 'study': # run over a range of settings and save/plot
|
|
||||||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
|
||||||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
|
||||||
x = list(range(320, 800, 64)) # x axis
|
|
||||||
y = [] # y axis
|
|
||||||
for i in x: # img-size
|
|
||||||
print('\nRunning %s point %s...' % (f, i))
|
|
||||||
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
|
|
||||||
y.append(r + t) # results and times
|
|
||||||
np.savetxt(f, y, fmt='%10.4g') # save
|
|
||||||
os.system('zip -r study.zip study_*.txt')
|
|
||||||
# utils.general.plot_study_txt(f, x) # plot
|
|
30
test.py
30
test.py
|
@ -2,7 +2,6 @@ import argparse
|
||||||
import glob
|
import glob
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -12,9 +11,9 @@ from tqdm import tqdm
|
||||||
|
|
||||||
from models.experimental import attempt_load
|
from models.experimental import attempt_load
|
||||||
from utils.datasets import create_dataloader
|
from utils.datasets import create_dataloader
|
||||||
from utils.general import (
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, \
|
||||||
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
|
non_max_suppression, scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, \
|
||||||
xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
|
ap_per_class, set_logging, increment_dir
|
||||||
from utils.torch_utils import select_device, time_synchronized
|
from utils.torch_utils import select_device, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
@ -46,16 +45,11 @@ def test(data,
|
||||||
device = select_device(opt.device, batch_size=batch_size)
|
device = select_device(opt.device, batch_size=batch_size)
|
||||||
save_txt = opt.save_txt # save *.txt labels
|
save_txt = opt.save_txt # save *.txt labels
|
||||||
|
|
||||||
# Remove previous
|
# Directories
|
||||||
if os.path.exists(save_dir):
|
if save_dir == Path('runs/test'): # if default
|
||||||
shutil.rmtree(save_dir) # delete dir
|
os.makedirs('runs/test', exist_ok=True) # make base
|
||||||
os.makedirs(save_dir) # make new dir
|
save_dir = Path(increment_dir(save_dir / 'exp', opt.name)) # increment run
|
||||||
|
os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir
|
||||||
if save_txt:
|
|
||||||
out = save_dir / 'autolabels'
|
|
||||||
if os.path.exists(out):
|
|
||||||
shutil.rmtree(out) # delete dir
|
|
||||||
os.makedirs(out) # make new dir
|
|
||||||
|
|
||||||
# Load model
|
# Load model
|
||||||
model = attempt_load(weights, map_location=device) # load FP32 model
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
@ -144,8 +138,8 @@ def test(data,
|
||||||
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
|
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
|
||||||
for *xyxy, conf, cls in x:
|
for *xyxy, conf, cls in x:
|
||||||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
line = (cls, conf, *xywh) if save_conf else (cls, *xywh) # label format
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
|
with open(str(save_dir / 'labels' / Path(paths[si]).stem) + '.txt', 'a') as f:
|
||||||
f.write(('%g ' * len(line) + '\n') % line)
|
f.write(('%g ' * len(line) + '\n') % line)
|
||||||
|
|
||||||
# W&B logging
|
# W&B logging
|
||||||
|
@ -268,6 +262,7 @@ def test(data,
|
||||||
print('ERROR: pycocotools unable to run: %s' % e)
|
print('ERROR: pycocotools unable to run: %s' % e)
|
||||||
|
|
||||||
# Return results
|
# Return results
|
||||||
|
print('Results saved to %s' % save_dir)
|
||||||
model.float() # for training
|
model.float() # for training
|
||||||
maps = np.zeros(nc) + map
|
maps = np.zeros(nc) + map
|
||||||
for i, c in enumerate(ap_class):
|
for i, c in enumerate(ap_class):
|
||||||
|
@ -292,6 +287,7 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
parser.add_argument('--save-dir', type=str, default='runs/test', help='directory to save results')
|
parser.add_argument('--save-dir', type=str, default='runs/test', help='directory to save results')
|
||||||
|
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
opt.save_json |= opt.data.endswith('coco.yaml')
|
opt.save_json |= opt.data.endswith('coco.yaml')
|
||||||
opt.data = check_file(opt.data) # check file
|
opt.data = check_file(opt.data) # check file
|
||||||
|
@ -313,8 +309,6 @@ if __name__ == '__main__':
|
||||||
save_conf=opt.save_conf,
|
save_conf=opt.save_conf,
|
||||||
)
|
)
|
||||||
|
|
||||||
print('Results saved to %s' % opt.save_dir)
|
|
||||||
|
|
||||||
elif opt.task == 'study': # run over a range of settings and save/plot
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||||
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||||
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
|
||||||
|
|
11
train.py
11
train.py
|
@ -1,5 +1,6 @@
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import math
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
import shutil
|
import shutil
|
||||||
|
@ -7,7 +8,6 @@ import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from warnings import warn
|
from warnings import warn
|
||||||
|
|
||||||
import math
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
@ -404,14 +404,14 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||||||
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||||
parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
|
|
||||||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||||
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||||
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
||||||
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||||
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||||
parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
|
parser.add_argument('--logdir', type=str, default='runs/train', help='logging directory')
|
||||||
|
parser.add_argument('--name', default='', help='name to append to --save-dir: i.e. runs/{N} -> runs/{N}_{name}')
|
||||||
parser.add_argument('--log-imgs', type=int, default=10, help='number of images for W&B logging, max 100')
|
parser.add_argument('--log-imgs', type=int, default=10, help='number of images for W&B logging, max 100')
|
||||||
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
||||||
|
|
||||||
|
@ -428,7 +428,7 @@ if __name__ == '__main__':
|
||||||
# Resume
|
# Resume
|
||||||
if opt.resume: # resume an interrupted run
|
if opt.resume: # resume an interrupted run
|
||||||
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||||||
log_dir = Path(ckpt).parent.parent # runs/exp0
|
log_dir = Path(ckpt).parent.parent # runs/train/exp0
|
||||||
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||||||
with open(log_dir / 'opt.yaml') as f:
|
with open(log_dir / 'opt.yaml') as f:
|
||||||
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
|
||||||
|
@ -467,14 +467,13 @@ if __name__ == '__main__':
|
||||||
if opt.global_rank in [-1, 0]:
|
if opt.global_rank in [-1, 0]:
|
||||||
# Tensorboard
|
# Tensorboard
|
||||||
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/')
|
logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.logdir}", view at http://localhost:6006/')
|
||||||
tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
|
tb_writer = SummaryWriter(log_dir=log_dir) # runs/train/exp0
|
||||||
|
|
||||||
# W&B
|
# W&B
|
||||||
try:
|
try:
|
||||||
import wandb
|
import wandb
|
||||||
|
|
||||||
assert os.environ.get('WANDB_DISABLED') != 'true'
|
assert os.environ.get('WANDB_DISABLED') != 'true'
|
||||||
logger.info("Weights & Biases logging enabled, to disable set os.environ['WANDB_DISABLED'] = 'true'")
|
|
||||||
except (ImportError, AssertionError):
|
except (ImportError, AssertionError):
|
||||||
opt.log_imgs = 0
|
opt.log_imgs = 0
|
||||||
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")
|
||||||
|
|
|
@ -596,22 +596,22 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source inference/images/\n",
|
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/\n",
|
||||||
"Image(filename='inference/output/zidane.jpg', width=600)"
|
"Image(filename='runs/detect/exp0/zidane.jpg', width=600)"
|
||||||
],
|
],
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='inference/output', save_txt=False, source='inference/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n",
|
"Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])\n",
|
||||||
"Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)\n",
|
"Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Fusing layers... \n",
|
"Fusing layers... \n",
|
||||||
"Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients\n",
|
"Model Summary: 140 layers, 7.45958e+06 parameters, 0 gradients\n",
|
||||||
"image 1/2 /content/yolov5/inference/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)\n",
|
"image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)\n",
|
||||||
"image 2/2 /content/yolov5/inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)\n",
|
"image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)\n",
|
||||||
"Results saved to inference/output\n",
|
"Results saved to runs/detect/exp0\n",
|
||||||
"Done. (0.113s)\n"
|
"Done. (0.113s)\n"
|
||||||
],
|
],
|
||||||
"name": "stdout"
|
"name": "stdout"
|
||||||
|
@ -640,7 +640,7 @@
|
||||||
"id": "4qbaa3iEcrcE"
|
"id": "4qbaa3iEcrcE"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"Results are saved to `inference/output`. A full list of available inference sources:\n",
|
"Results are saved to `runs/detect`. A full list of available inference sources:\n",
|
||||||
"<img src=\"https://user-images.githubusercontent.com/26833433/98274798-2b7a7a80-1f94-11eb-91a4-70c73593e26b.jpg\" width=\"900\"> "
|
"<img src=\"https://user-images.githubusercontent.com/26833433/98274798-2b7a7a80-1f94-11eb-91a4-70c73593e26b.jpg\" width=\"900\"> "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -887,7 +887,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"Train a YOLOv5s model on [COCO128](https://www.kaggle.com/ultralytics/coco128) with dataset `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and **COCO, COCO128, and VOC datasets are downloaded automatically** on first use.\n",
|
"Train a YOLOv5s model on [COCO128](https://www.kaggle.com/ultralytics/coco128) with dataset `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and **COCO, COCO128, and VOC datasets are downloaded automatically** on first use.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"All training results are saved to `runs/exp0` for the first experiment, then `runs/exp1`, `runs/exp2` etc. for subsequent experiments.\n"
|
"All training results are saved to `runs/train/exp0` for the first experiment, then `runs/exp1`, `runs/exp2` etc. for subsequent experiments.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -969,7 +969,7 @@
|
||||||
"Analyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
"Analyzing anchors... anchors/target = 4.26, Best Possible Recall (BPR) = 0.9946\n",
|
||||||
"Image sizes 640 train, 640 test\n",
|
"Image sizes 640 train, 640 test\n",
|
||||||
"Using 2 dataloader workers\n",
|
"Using 2 dataloader workers\n",
|
||||||
"Logging results to runs/exp0\n",
|
"Logging results to runs/train/exp0\n",
|
||||||
"Starting training for 3 epochs...\n",
|
"Starting training for 3 epochs...\n",
|
||||||
"\n",
|
"\n",
|
||||||
" Epoch gpu_mem box obj cls total targets img_size\n",
|
" Epoch gpu_mem box obj cls total targets img_size\n",
|
||||||
|
@ -986,8 +986,8 @@
|
||||||
" 2/2 3.17G 0.04445 0.06545 0.01666 0.1266 149 640: 100% 8/8 [00:01<00:00, 4.33it/s]\n",
|
" 2/2 3.17G 0.04445 0.06545 0.01666 0.1266 149 640: 100% 8/8 [00:01<00:00, 4.33it/s]\n",
|
||||||
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 2.78it/s]\n",
|
" Class Images Targets P R mAP@.5 mAP@.5:.95: 100% 8/8 [00:02<00:00, 2.78it/s]\n",
|
||||||
" all 128 929 0.395 0.766 0.701 0.455\n",
|
" all 128 929 0.395 0.766 0.701 0.455\n",
|
||||||
"Optimizer stripped from runs/exp0/weights/last.pt, 15.2MB\n",
|
"Optimizer stripped from runs/train/exp0/weights/last.pt, 15.2MB\n",
|
||||||
"Optimizer stripped from runs/exp0/weights/best.pt, 15.2MB\n",
|
"Optimizer stripped from runs/train/exp0/weights/best.pt, 15.2MB\n",
|
||||||
"3 epochs completed in 0.005 hours.\n",
|
"3 epochs completed in 0.005 hours.\n",
|
||||||
"\n"
|
"\n"
|
||||||
],
|
],
|
||||||
|
@ -1030,7 +1030,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"## Local Logging\n",
|
"## Local Logging\n",
|
||||||
"\n",
|
"\n",
|
||||||
"All results are logged by default to the `runs/exp0` directory, with a new directory created for each new training as `runs/exp1`, `runs/exp2`, etc. View train and test jpgs to see mosaics, labels/predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)."
|
"All results are logged by default to the `runs/train/exp0` directory, with a new directory created for each new training as `runs/exp1`, `runs/exp2`, etc. View train and test jpgs to see mosaics, labels/predictions and augmentation effects. Note a **Mosaic Dataloader** is used for training (shown below), a new concept developed by Ultralytics and first featured in [YOLOv4](https://arxiv.org/abs/2004.10934)."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1039,9 +1039,9 @@
|
||||||
"id": "riPdhraOTCO0"
|
"id": "riPdhraOTCO0"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"Image(filename='runs/exp0/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n",
|
"Image(filename='runs/train/exp0/train_batch0.jpg', width=800) # train batch 0 mosaics and labels\n",
|
||||||
"Image(filename='runs/exp0/test_batch0_gt.jpg', width=800) # test batch 0 ground truth\n",
|
"Image(filename='runs/train/exp0/test_batch0_gt.jpg', width=800) # test batch 0 ground truth\n",
|
||||||
"Image(filename='runs/exp0/test_batch0_pred.jpg', width=800) # test batch 0 predictions"
|
"Image(filename='runs/train/exp0/test_batch0_pred.jpg', width=800) # test batch 0 predictions"
|
||||||
],
|
],
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"outputs": []
|
"outputs": []
|
||||||
|
@ -1078,7 +1078,7 @@
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"from utils.utils import plot_results \n",
|
"from utils.utils import plot_results \n",
|
||||||
"plot_results(save_dir='runs/exp0') # plot results.txt as results.png\n",
|
"plot_results(save_dir='runs/train/exp0') # plot results.txt as results.png\n",
|
||||||
"Image(filename='results.png', width=800) "
|
"Image(filename='results.png', width=800) "
|
||||||
],
|
],
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
|
@ -1170,9 +1170,9 @@
|
||||||
" for di in 0 cpu # inference devices\n",
|
" for di in 0 cpu # inference devices\n",
|
||||||
" do\n",
|
" do\n",
|
||||||
" python detect.py --weights $x.pt --device $di # detect official\n",
|
" python detect.py --weights $x.pt --device $di # detect official\n",
|
||||||
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
|
" python detect.py --weights runs/train/exp0/weights/last.pt --device $di # detect custom\n",
|
||||||
" python test.py --weights $x.pt --device $di # test official\n",
|
" python test.py --weights $x.pt --device $di # test official\n",
|
||||||
" python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
|
" python test.py --weights runs/train/exp0/weights/last.pt --device $di # test custom\n",
|
||||||
" done\n",
|
" done\n",
|
||||||
" python models/yolo.py --cfg $x.yaml # inspect\n",
|
" python models/yolo.py --cfg $x.yaml # inspect\n",
|
||||||
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
|
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
|
||||||
|
|
|
@ -955,9 +955,15 @@ def increment_dir(dir, comment=''):
|
||||||
# Increments a directory runs/exp1 --> runs/exp2_comment
|
# Increments a directory runs/exp1 --> runs/exp2_comment
|
||||||
n = 0 # number
|
n = 0 # number
|
||||||
dir = str(Path(dir)) # os-agnostic
|
dir = str(Path(dir)) # os-agnostic
|
||||||
|
if os.path.isdir(dir):
|
||||||
|
stem = ''
|
||||||
|
dir += os.sep # removed by Path
|
||||||
|
else:
|
||||||
|
stem = Path(dir).stem
|
||||||
|
|
||||||
dirs = sorted(glob.glob(dir + '*')) # directories
|
dirs = sorted(glob.glob(dir + '*')) # directories
|
||||||
if dirs:
|
if dirs:
|
||||||
matches = [re.search(r"exp(\d+)", d) for d in dirs]
|
matches = [re.search(r"%s(\d+)" % stem, d) for d in dirs]
|
||||||
idxs = [int(m.groups()[0]) for m in matches if m]
|
idxs = [int(m.groups()[0]) for m in matches if m]
|
||||||
if idxs:
|
if idxs:
|
||||||
n = max(idxs) + 1 # increment
|
n = max(idxs) + 1 # increment
|
||||||
|
@ -1262,7 +1268,7 @@ def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_
|
||||||
|
|
||||||
|
|
||||||
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||||
# from utils.general import *; plot_results(save_dir='runs/exp0')
|
# from utils.general import *; plot_results(save_dir='runs/train/exp0')
|
||||||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
||||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||||||
ax = ax.ravel()
|
ax = ax.ravel()
|
||||||
|
|
Loading…
Reference in New Issue