Fix redundant outputs via Logging in DDP training (#500)
* Change print to logging * Clean function set_logging * Add line spacing * Change leftover prints to log * Fix scanning labels output * Fix rank naming * Change leftover print to logging * Reorganized DDP variables * Fix type error * Make quotes consistent * Fix spelling * Clean function call * Add line spacing * Update datasets.py * Update train.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>pull/722/head
parent
542833c997
commit
4949401a94
|
@ -1,5 +1,6 @@
|
|||
import argparse
|
||||
import math
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -12,6 +13,7 @@ from utils.general import check_anchor_order, make_divisible, check_file
|
|||
from utils.torch_utils import (
|
||||
time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Detect(nn.Module):
|
||||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||
|
@ -169,7 +171,7 @@ class Model(nn.Module):
|
|||
|
||||
|
||||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
|
@ -224,7 +226,7 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
np = sum([x.numel() for x in m_.parameters()]) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
ch.append(c2)
|
||||
|
|
50
train.py
50
train.py
|
@ -3,6 +3,7 @@ import math
|
|||
import os
|
||||
import random
|
||||
import time
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
@ -23,13 +24,14 @@ from utils.datasets import create_dataloader
|
|||
from utils.general import (
|
||||
torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
|
||||
compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
|
||||
check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution)
|
||||
check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging)
|
||||
from utils.google_utils import attempt_download
|
||||
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def train(hyp, opt, device, tb_writer=None):
|
||||
print(f'Hyperparameters {hyp}')
|
||||
logger.info(f'Hyperparameters {hyp}')
|
||||
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
|
||||
wdir = str(log_dir / 'weights') + os.sep # weights directory
|
||||
os.makedirs(wdir, exist_ok=True)
|
||||
|
@ -69,7 +71,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||||
model.load_state_dict(state_dict, strict=False) # load
|
||||
print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||
logging.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||
else:
|
||||
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
||||
|
||||
|
@ -103,7 +105,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
|
||||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||||
print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||
del pg0, pg1, pg2
|
||||
|
||||
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||||
|
@ -128,7 +130,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
# Epochs
|
||||
start_epoch = ckpt['epoch'] + 1
|
||||
if epochs < start_epoch:
|
||||
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||
(weights, ckpt['epoch'], epochs))
|
||||
epochs += ckpt['epoch'] # finetune additional epochs
|
||||
|
||||
|
@ -145,7 +147,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
# SyncBatchNorm
|
||||
if opt.sync_bn and cuda and rank != -1:
|
||||
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||
print('Using SyncBatchNorm()')
|
||||
logger.info('Using SyncBatchNorm()')
|
||||
|
||||
# Exponential moving average
|
||||
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||||
|
@ -156,7 +158,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
|
||||
# Trainloader
|
||||
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
||||
cache=opt.cache_images, rect=opt.rect, local_rank=rank,
|
||||
cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||||
world_size=opt.world_size)
|
||||
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||||
nb = len(dataloader) # number of batches
|
||||
|
@ -166,7 +168,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
if rank in [-1, 0]:
|
||||
# local_rank is set to -1. Because only the first process is expected to do evaluation.
|
||||
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False,
|
||||
cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0]
|
||||
cache=opt.cache_images, rect=True, rank=-1, world_size=opt.world_size)[0]
|
||||
|
||||
# Model parameters
|
||||
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
||||
|
@ -199,10 +201,9 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
scaler = amp.GradScaler(enabled=cuda)
|
||||
if rank in [0, -1]:
|
||||
print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
||||
print('Using %g dataloader workers' % dataloader.num_workers)
|
||||
print('Starting training for %g epochs...' % epochs)
|
||||
logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
||||
logger.info('Using %g dataloader workers' % dataloader.num_workers)
|
||||
logger.info('Starting training for %g epochs...' % epochs)
|
||||
# torch.autograd.set_detect_anomaly(True)
|
||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||
model.train()
|
||||
|
@ -232,8 +233,8 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
if rank != -1:
|
||||
dataloader.sampler.set_epoch(epoch)
|
||||
pbar = enumerate(dataloader)
|
||||
logging.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||
if rank in [-1, 0]:
|
||||
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||
pbar = tqdm(pbar, total=nb) # progress bar
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||
|
@ -269,7 +270,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
if rank != -1:
|
||||
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||||
# if not torch.isfinite(loss):
|
||||
# print('WARNING: non-finite loss, ending training ', loss_items)
|
||||
# logger.info('WARNING: non-finite loss, ending training ', loss_items)
|
||||
# return results
|
||||
|
||||
# Backward
|
||||
|
@ -369,7 +370,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|||
# Finish
|
||||
if not opt.evolve:
|
||||
plot_results(save_dir=log_dir) # save as results.png
|
||||
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||
|
||||
dist.destroy_process_group() if rank not in [-1, 0] else None
|
||||
torch.cuda.empty_cache()
|
||||
|
@ -404,13 +405,19 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
|
||||
opt = parser.parse_args()
|
||||
|
||||
# Set DDP variables
|
||||
opt.total_batch_size = opt.batch_size
|
||||
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
||||
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
||||
set_logging(opt.global_rank)
|
||||
|
||||
# Resume
|
||||
if opt.resume:
|
||||
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
|
||||
if last and not opt.weights:
|
||||
print(f'Resuming training from {last}')
|
||||
logger.info(f'Resuming training from {last}')
|
||||
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
||||
if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
|
||||
if opt.global_rank in [-1,0]:
|
||||
check_git_status()
|
||||
|
||||
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')
|
||||
|
@ -419,9 +426,6 @@ if __name__ == '__main__':
|
|||
|
||||
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||
opt.total_batch_size = opt.batch_size
|
||||
opt.world_size = 1
|
||||
opt.global_rank = -1
|
||||
|
||||
# DDP mode
|
||||
if opt.local_rank != -1:
|
||||
|
@ -429,12 +433,10 @@ if __name__ == '__main__':
|
|||
torch.cuda.set_device(opt.local_rank)
|
||||
device = torch.device('cuda', opt.local_rank)
|
||||
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||
opt.world_size = dist.get_world_size()
|
||||
opt.global_rank = dist.get_rank()
|
||||
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||||
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||
|
||||
print(opt)
|
||||
logger.info(opt)
|
||||
with open(opt.hyp) as f:
|
||||
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
|
||||
|
||||
|
@ -442,7 +444,7 @@ if __name__ == '__main__':
|
|||
if not opt.evolve:
|
||||
tb_writer = None
|
||||
if opt.global_rank in [-1, 0]:
|
||||
print('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
|
||||
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
|
||||
tb_writer = SummaryWriter(log_dir=increment_dir(Path(opt.logdir) / 'exp', opt.name)) # runs/exp
|
||||
|
||||
train(hyp, opt, device, tb_writer)
|
||||
|
|
|
@ -47,9 +47,9 @@ def exif_size(img):
|
|||
|
||||
|
||||
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||
local_rank=-1, world_size=1):
|
||||
rank=-1, world_size=1):
|
||||
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
|
||||
with torch_distributed_zero_first(local_rank):
|
||||
with torch_distributed_zero_first(rank):
|
||||
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
||||
augment=augment, # augment images
|
||||
hyp=hyp, # augmentation hyperparameters
|
||||
|
@ -57,11 +57,12 @@ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=Fa
|
|||
cache_images=cache,
|
||||
single_cls=opt.single_cls,
|
||||
stride=int(stride),
|
||||
pad=pad)
|
||||
pad=pad,
|
||||
rank=rank)
|
||||
|
||||
batch_size = min(batch_size, len(dataset))
|
||||
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
||||
dataloader = torch.utils.data.DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=nw,
|
||||
|
@ -292,7 +293,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||
|
||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
cache_images=False, single_cls=False, stride=32, pad=0.0):
|
||||
cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
|
||||
try:
|
||||
f = [] # image files
|
||||
for p in path if isinstance(path, list) else [path]:
|
||||
|
@ -372,8 +373,10 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
# Cache labels
|
||||
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
|
||||
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
||||
pbar = tqdm(self.label_files)
|
||||
for i, file in enumerate(pbar):
|
||||
pbar = enumerate(self.label_files)
|
||||
if rank in [-1, 0]:
|
||||
pbar = tqdm(pbar)
|
||||
for i, file in pbar:
|
||||
l = self.labels[i] # label
|
||||
if l is not None and l.shape[0]:
|
||||
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
||||
|
@ -420,8 +423,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
||||
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
||||
|
||||
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
||||
cache_path, nf, nm, ne, nd, n)
|
||||
if rank in [-1,0]:
|
||||
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
||||
cache_path, nf, nm, ne, nd, n)
|
||||
if nf == 0:
|
||||
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
||||
print(s)
|
||||
|
|
|
@ -5,6 +5,7 @@ import random
|
|||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
import logging
|
||||
from contextlib import contextmanager
|
||||
from copy import copy
|
||||
from pathlib import Path
|
||||
|
@ -45,6 +46,12 @@ def torch_distributed_zero_first(local_rank: int):
|
|||
torch.distributed.barrier()
|
||||
|
||||
|
||||
def set_logging(rank=-1):
|
||||
logging.basicConfig(
|
||||
format="%(message)s",
|
||||
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
||||
|
||||
|
||||
def init_seeds(seed=0):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import torch
|
||||
|
@ -9,6 +10,7 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
import torchvision.models as models
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def init_seeds(seed=0):
|
||||
torch.manual_seed(seed)
|
||||
|
@ -40,12 +42,12 @@ def select_device(device='', batch_size=None):
|
|||
for i in range(0, ng):
|
||||
if i == 1:
|
||||
s = ' ' * len(s)
|
||||
print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
|
||||
logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
|
||||
(s, i, x[i].name, x[i].total_memory / c))
|
||||
else:
|
||||
print('Using CPU')
|
||||
logger.info('Using CPU')
|
||||
|
||||
print('') # skip a line
|
||||
logger.info('') # skip a line
|
||||
return torch.device('cuda:0' if cuda else 'cpu')
|
||||
|
||||
|
||||
|
@ -142,7 +144,7 @@ def model_info(model, verbose=False):
|
|||
except:
|
||||
fs = ''
|
||||
|
||||
print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
|
||||
logger.info('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
|
||||
|
||||
|
||||
def load_classifier(name='resnet101', n=2):
|
||||
|
|
Loading…
Reference in New Issue