resolved the error
parent
1fbde181d4
commit
4a8e374ddf
12
train.py
12
train.py
|
@ -352,15 +352,7 @@ def train(hyp, opt, device, callbacks):
|
|||
maps = np.zeros(nc) # mAP per class
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||
<<<<<<< HEAD
|
||||
scaler = torch.amp.GradScaler(enabled=device.type != "cpu")
|
||||
=======
|
||||
|
||||
# checking if autocast is available
|
||||
device_amp = torch.is_autocast_available(device_type=device.type)
|
||||
|
||||
scaler = torch.amp.GradScaler(enabled=(device_amp and device.type != "cpu"))
|
||||
>>>>>>> 5d03fd8cdd44ce49148653ba4ea874d9cd41a832
|
||||
scaler = torch.amp.GradScaler("cuda", enabled=amp) #updated
|
||||
stopper, stop = EarlyStopping(patience=opt.patience), False
|
||||
compute_loss = ComputeLoss(model) # init loss class
|
||||
callbacks.run("on_train_start")
|
||||
|
@ -417,7 +409,7 @@ def train(hyp, opt, device, callbacks):
|
|||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
|
||||
# Forward
|
||||
with torch.amp.autocast(device_type=device.type, enabled=True):
|
||||
with torch.amp.autocast("cuda", enabled=amp):
|
||||
pred = model(imgs) # forward
|
||||
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||
if RANK != -1:
|
||||
|
|
Loading…
Reference in New Issue